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processor possessing 'failed 06 ™ fault tolerance and a probability of failure
>1x 1_0‘9 for a two-hour mission.
P A AP T RN AR

Triplication is employed throughbut the design because of the require-
ment to achieve correct operation after the detection of a second error.
Functional, complementary partitioning of the requirements leads to an
implementation that can be matched to highly integrated devices. A bit-slice
processor implements the application requirements, while the error prcces-
sing and processor redundancy management is handled by a computer-on- )
chip (COC) family of devices. Specially designed self -checking checkers
and partition interconnections devices provide comprehensive and extended
error protection and interlocked reconfiguration control with respect to both
consistent and inconsistent errors. ==

Performance of the self-diagnosing, fault tolerant processor (SDFTP)
is comparable to that of a simplex bit-slice processor. Throughput esti-
mates indicate that instruction execution rates satisfy the baseline applica-
tion requirements. Error recovery times depend on self -test diagnostic
run times for some second error resolution and are currently projected to be
less than 10 milliseconds.

Implementation of the SDFTP requires approximately 4.6 times as many
devices as the simplex equivalent processor and nearly 40% added parts ’1
types, of which nearly all are LSI circuits. :

A program plan to implement and demonstrate the self -diagnosing, fault ]
tolerant processor is included.
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FOREWORD

The effort, which this following report documents, defines approaches
for designing highly reliable airborne processors using, for the most part,
present off-the-shelf hardware. Designs are intimately described for
several special purpose chips to handle the voting »nd error handling task:
of the fault tolerant design. This program achieved the design of an air-
borne processor targeted for flight control applications with a probability
of failure of less than 1 x 10~2 in a two hour mission. Throughput is in
the vicinity of 300,000 to 400,000 operations per second. Error recovery
would require a maximum of 10 milliseconds. CPU instruction set a~chitecture

is that of a presently available processor so that very little additional
support software need be developed.

This report was submitted in October 1978.

Publication of this report does not constitute USAF approval of repo-t

findings or conclusions, and has been accomplished only for the exchange
and stimulation of ideas.
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I. INTRODUCTION
A. GENERAL DESCRIPTION

The Self-Diagnosing fault tolerant processor (SDFTP) demonstrates
that large scale integrated (LSI) circuit devices can be used to effectively
implement current and future military avionic digital system requirements.
In this way the predicted advantages of reduced size, weight and cost of
LSI implementations are realized. The design also shows that commercially
available LSI devices can be used to implement a large percentage of the
processor. By supplementing these devices with a few special part types and
using self diagnosing and fault-tolerant techniques, a processor has been
designed with the required high fault tolerance and predicted reliability
required for airborn fly-by-wire flight control processor application. Manv
of these special circuits should find use in other equipments having lower
fault tolerance and reliability requirements, to the extent that their utiliza-
tion could become widespread.

This high predicted reliability is achieved while taking into account
the modifications to the fault models of current digital circuits which highly
integrated devices require for high-confidence reliability predictions.

The design emplovs both dynamic and static redundancy in conjunction
with self-diagnosing design techniques to produce the necessary reliability
enhancement and fault-tolerance improvement of the simplex processor.
Although redundancy is emploved as the primary means of achieving fault
tolerance, periodic self-testing is recommended for status assessment and
initial flight check-out. Because of this approach maintenance should be
processor directed using built in self-diagnoses.

Both bit -slice and monolithic microprocessors are used in a
complementary fashion that matches the device capabilities to the functional
division of the processor requirements. The division of labor between the
processors is derived, pvrimarily, from the performance and reliability
requirements and the desire for a wide range of applicability. Assignment
of the application functions to the bit-slice processor and the management of the
fault tolerance requirements to the computer-on-the chip family of devices
produces a design that is well matched to its intended use.

This report begins with a summary of the baseline application studies,
which led to the selection of the flyv-by-wire flight control application, and of
the design guidelines developed for the design of self-diagnosing processors
using LST components. A summary of the self-diagnosing fault tolerant (SDFTP)
design concludes this Section. Section II present conclusions and recommendations.

Section III, Processor Design is a detailed description of the design
beginning with a general overview followed by a discussion of the bit-slice
processor and the computer-on-chip implementation of the Reconfiguration and
Recovery Unit. Section [V, Processor Self-Test, relates the self-test
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requirements to some preliminary simulation results in terms of test program
size and coverage based on LSI device implementations. Reliability modeling
and failure analysis of the SDFTDP and the simplex processor are covered in
Section V, Reliability Enhancement and Prediction.

SDFTP and the simplex processor are compared in Section VI, and
Section VII discusses the plan for designing, building, and demonstrating a
self-diagnosing, fault-tolerant processor. The two appendices detail the
baseline requirements study and the design guidelines.

B. APPLICATION SUMMARY

Two airborne applications were selected as potential sources of
baseline requirements. The applications considered were the fly-by-wire
flicht control processor and the synthetic aperture ground map function of
an airborne multimode radar signal processor. Both applications were
examined to determine the requirements, beginning with mission identification
and functional analysis. The work led to the development of algorithm flow
followed by performance analysis of representative tasks and resource sizing,
in terms of memory, processor speed and complexity as measured by the
variety of operations and execution speed. These results are summarized in
Appendix I,

1. Definition of Baseline Processing Requirements

The flight -control application is considered first in Section A of
Appendix [ since it represents a set of requirements that falls within the
capabilities of systems that can be configured in a single programmable
computer structure, and which can be implemented today using existing
LSI devices such as microprocessors and memories. It is estimated that a
high performance control configured, flv-by wire aircraft would require less
than 16,000 words of 16-bil wide memory and could be controlled by a
processor capable of executing instructions at a rate of 300 to 400 thousands
of operations per second (KOPS). Because of the safety requirements of this
application, quadruple redundancv coupled with software implemented
redundancy management leads to a sophisticated input output system that
connects the electronic flight control system to the aircraft control sensors
and actuators. The reconfiguration approach selected is desimmed to achieve
"failed op-squared” faull tolerance for the electronics.

The second application, Synthetic Aperture Ground Map Processing
of a Multimode Radar (described in Appendix I, results in signal processor
requirements that are beyond the capability of current and near future single
conventional microprocessor designs. However, special programmable
pipeline processors and netted sets of microprocessors are believed capable
of achieving the performance required. As in many other radar signal
processing applications, the core signal processing function has the abilitv
to generate a doppler frequency analysis of the radar return. For this
ground-mapping mode of the multimode radar, a processing rate in excess of
20 % 106 complex multiplies is required in addition to a signal processing
operation rate in the 1-2 million instructions per second range. Compared
to the flight—control application, the multimode memory requirements are
significantly larger and are estimated to fall in the 3.5 million bit range.




This storage is normally distributed throughout the signal processor and mus!
provide a high memory accessing rate capability, which i-. a function of the
specific radar mode and signal processor »» alecture.

C. DESIGN G LuINES

The effects of architecture, functional parti..oning, and module
and component features on microprogrammable selfl diagnosing capabilities
of digital processors were investigated. These results were then used 1o
create a set of design guidelines for designing self-diagnosing, fault -tolerant
processors for both monolithic and bit -slice processors. Appendix II. Desien
Guidelines, covers the findings of the studv and describes the techniques
considered.

Application of the guidelines stronglv influenced the desiun of the
SDFTP. One of the major conclusions is that architectural considerations
are of primary importance in the design of a self--diagnosing processor,
particularly those making extensive use of large scale integrated (LST)
circuits. A major factor in this conclusion is that fault models of these self-
diagnosing processors should include multiple errors. Applving this constramnt
in the evaluation of checking techniques leads, in general, to the selection of
replication as the prefeived coding approach and for processors in varticular .
Periodic testing is rejected as a primary approach because of its poor detection
of inconsistent errors, incompatibility with real-time requirements, uncertain 3
affectiveness of diagnostic routines in accounting for multiple errors. and
difficulty in generating multiple error diagnostics.

Utilization of redundancy for self-diagnosis and fault tolerance leads
to an increase in tie probability of failure and to the desirability of enhancing
the reliability of the self-diagncsing processor design. However, most of the
redundancy techniques that are theoretically interesting applv only at the
component level and, il applied as static redundancy, are effective for short
times compared to their mean -tinie to failure. Consequently, bit-slice
processors are preferred over monolithic microprocessors because of their
lower circuit complexity and grealer treedom in partitioning. Technological
considerations dictate that redundancy be applied external to the device. at least
for the immediate future.

Partitioning of the processor designs is based on hardware attributes ,
fault error models, and type of diagnosis. Hardware attributes include partition
function, structure regularitv, size, speed and communication requirements.
Using these criteria, functional partitioning was determined to be the most
effective tvpe. For a bit -slice processor the partitions are: processor,
control, memory, input output and buses. Placement of the boundaries of the
partitions were strongly influenced by the breadth of communication required
among the partitions since the size of the interface circuitry was a direct
function of the number of interface signals,

The guideline summary for a fault tolerant, self-diagnosing bit -
slice microprocessor is presented in Table T . The bus recommendation
applies only to interual communication within the processor and memoryv and
does not account for noise. Memories can also be an exception to the general
recommendation of redundancyv for self-diagnosing protection. For medium
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to large-sized memories conventional coding techniques are efficient

and effective. Specifically, a single error correcting-double error detecting
code with self-checking implementation of the encoders and decoders is
recommended.

D. SDFTP DESIGN

The SDFTP design is a synergistic combination of commercially
available bit-slice microprocessors and computer-on-chip family of devices.
It can be the archtvpe for a range of microprocessor-hbased systems, which
meet high reliability military standards, using L.SI devices. It emplovs seli-
diagnosing techniques, redundancy, and deferred maintenance to achieve a high
tevel of fault tolerance — i.e., tolerate two faults with correct operation after
the second fault. The design is developed according to a top-level functional
partitioning of the requirements into two sets. They are the application set
and the fault tolerant set. The application set is implemented by a replicated
bit-slice microprocessor that handles the execution processes and communicates
with the outside world.

The second set is concerned with the detection of errors and the
management of the resources to achieve the required level of fault tolerance.
It is implemenied with 2 combination of special custom-designed devices and
a computer-on-chip famity of devices. This combination of devices performs
the five functions of fault tolerance:

1) error detection

2) error location

3) failed function substitution
4) reconfiguration

5) recovery

This distribution of resources follows the Design Guidelines developed
in the beginning of this program (See Appendix I Design Guidelines). It is
a reflection of the observation that architecture is the most important factor
in the design of a self-diagnosing system.

In highly reliable systems, such as this flight -control application,
partitioning also ranks high because of the trade-off that must be achieved
between access, partition failure rate, and communication path width.
Functional partitioning of the bit slice microprocessor resulted in:

1) generality of application through microprogrammability

2) performance sufficient to satisfy the flight -control application

3) partition failure rates that were sufficiently low that
replication could achieve the high reliability requirements
of flight-control applications.

4) partition interfaces that had reasonable hardware coupling
such that the necessary interface devices had relatively
low failure rates in comparison with those of its partition

The special, custom devices were instrumental in achieving this
last result. They are of a complexity, structure, and size that conventional




tools can be effectively used to analyze their properties and have failure rates
that are small compared to those of the partitions. They incorporate the ideas
needed for effective testability through the incorporation of scanning registers
and low level combinatorial networks between these registers.

Both the bit-slice microprocessor and the computer-on-chip (COC) are
triplicated for five reasons:

1) Three copies of a function are needed, at a minimum, if
"failed op2" fault tolerance is needed.

2) It was found that triplication provided sufficient reliability
enhancement for the short missions, so that a probability
of failure of less than 1 x 10-9 has been predicted.

3) Triplication is next to the cheapest of the single error
codes that can be used to reliably detect the multiple
bit errors exhibited by LSI devices.

4}  Totally self-checking checkers (TSC's) can be designed and
applied in such a way that any illegal input code (nonidentical
triad of signals) as well as any checker failure can be detected.
This extends the protection boundary of the bit-slice
processor to the input buffers of the computer-on-chip.

5) By emploving a triplicated cascade of these totally self-
checking checkers in a tree structure, a malfunction
transparent error collection network can be implemented.

This network transfornis the muitiple self-checking checker
outputs to a single signal that can interrupt the processing

in the bit -slice processors and can alert the computer-on-

chip that an error has been detected in the bit -slice processors.,

A single string version of the SDFTP is shown in Figure 1. The
bit -slice processor has been divided into three functional partitions resulting
in three internal interfaces and one output (memory) interface. Each inter-
face includes a pair of self-checking checkers (SCC) with triple - encoded outputs
connected to the COC input buffers and the SCC tree. When an error occurs,
the COC is interrupted by the output of the SCC tree and COC reads in the
error information from the interfaces through the COC Input Buffer. Using
this information the COC locates the error by interface and device and
determines whether reconfiguration of the bit -slice processor is required.

If it is, the COC sends a reconfiguration command to the appropriate bit-slice
processor voter-switches located at each interface, by means of its Output
Buffer. After reconfiguration has been completed, the COC initiates
recovery on the bit -slice processor by interrupting it and supplving it with

an interrupt vector, which, in most instances, is the address of the last
roll-back point of the application process in execution at the time of the
interrupt. If reconfiguration is not required after locating the error, the
COC initiates the recovery process.

In both cases the COC saves the error information and updates its
error history and SDFTP configuration status. This information can be made
available during flight for status assessment and, when not in flight -control
use, in computer-aided maintenance. This leads to improved repair and
higher processor availability.
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When the COC is not processing error reports, it performs self-
test, reads out data to a status display, or exercises the SDFTP to determine

if the error response system is operational.

Each interface between the bit - slice processor partitions consists
of a fixed interconnection of devices that perform the following functions.

Function Device
1) Check Partition Output (Partition) Output SCC
2) Reconfigure Interface & Voter-Switch
Perform Failed Function
Substitution
3) Check Voter-Switch (Partition) Input SCC
Output

interface interconnections are shown in Figure 2. Each inter-
face has an outpuc and input SCC function. The output SCC function is imple-
mented by special custom devices, which perform the totally self-checking
checker function by pairs of signals on the three partition outputs (COPY 1,
COPY 2, COPY 3), and have three code outputs. The device also snapshots
each triple input microcycle of the bit-slice processor. These inputs and the
three TSC's can be read out to the COC on command. The three TSC outputs ¥
are also connected to the SCC trees shown in Figure 1.

: The input SCC device is identical to the output SCC. It receives inputs
from the Voter-Switch device. These Voter-Switch triple inputs are checked in
pairs by connecting the three conibinations of signals to be checked to the

inputs of the three TSC's. The outputs of the TSC are also connected to both

the COC input buffers and the SCC trees. Snapshots of the Voter -Switch outputs
are also captured every microcycle and can be read out on command from the
COoC.

Reconfiguration and faited function substitution are the functions
performed by the Voter-Switch. Each triple of input bits of the partition word
can either be voted, or one of the three bits can be connected to the output
by a three -way switch. The output can be controlied by the COC by sending
a command that selects either the voter or the switch. If the switch connection
is elected, the command selects one of the three positions of the switch so that
the selected Voter-Switch input is connected to the output.

Two other special devices have been defined to make the fault
tolerance more effective and efficient. They are the SCC With Mask and the
Clock Controller. The SCC With Mask is used in the SCC tree. It has two
features that distinguish it from the SCC Without Mask. They are a wider
input capability (24 bits versus 16 bits) and an input masking capability. This
mask capability permits an input to be blocked so that its signal does not
contribute to the output of the device. It is used to prevent a faulted device
from causing interrupts after it has failed.

The clock controller is used with the COC device to inhibit inad-
vertent reconfiguration of the bit-slice processor. This protection is imple-
mented by interlocking the reconfiguration command clock usinc redundancy
and key codes.
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The last special circuit is the microsequencer that replaces six
devices in the microsequencer partition. Since the SDFTP design replicates
this partition three times, the savings are tripled. In addition to these
special considerations, the device has general appeal since it is believed
to be a better match, to most of the applications that are likely to be encountered
in dedicated military applications, than presently available microsequencer
devices.

These devices and techniques result in a design of greatly improved
reliability compared to the simplex processor. The SDFTP reliability is
calculated to be four to five orders of magnitude better than the simplex
processor for self-test coverage in the range of 0.9 to 1,0. These results
are based on detailed models of the SDFTP, which have been conservatively
established. The associated failure rates that were used in the model were
computed using military handbook values or procedures. Where necessary,
as is the case for custom devices and more complex commercially-available
devices, projections of the failure rates were developed. These projections
were based on an extrapolation of the complexity weights of the failure rate
equations., For an assumed self-test coverage factor of .95, the probability
of failure was determined to be less than 1 = 1079 for a three-hour mission.

Thus, compared to the simplex processor design, the SDFTP is
significantly superior for high fault-tolerant and high-reliability applications
with short mission time, such as the flv-bv-wire electronic flight control
processor. The SDFTP design can tolerate two faulls and still provide
undegraded operation, while the simplex processor has no tolerance at all.
The testability improvement has not been demonstrated, but should also be
much superior to the simplex design due to the partitioning and the insertion
of the scanning registers Hence, the repair rate and availability should be

much improved, since the design is self diagnosing and retains a run time
history.

Another of the major improvements should be in the quality of the
output be ‘ause of the folerance of the design to inconsistent errors. Transients
should, in general, be masked until the occurrence of a second fault in a
device. The value of this ilaprovement is difficult to quantify but available
data suggest that inconsistent errors can have frequencies of occurrence that
are 10 times that of the solid errors.

Performance of this SDFTP in terms of execution rate and through-
put closely parallels that of the simplex processor. The difference is believed
to be sufficiently small so that it is negligible. Loss of throughpui due to the
processing of detected error is between 5 to 10 milliseconds per detected
error with the average closer to five. This is due to the low probability of
a second error in the sawe interface device.

The price for this improvement is, of course, an increase in
physical resources. The SDFTP requires about 210 devices, which is about
4.6 times the number of devices needed to implement a simplex design.
Most of the increase is due to the triplication requirement but the difference
between the 4.6 factor of the SDFTP and triplication, 1.5, is a measure of
the efficiency of the self-diagnosing self-checking checker and the dvnamic
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redundancy control. The parts type comparison shows that eight additional
devices are required, most of which are of the LSI variety. Four of these
are special custom designs. At the cost of adding one additional device the
total parts count can be reduced to about 195 devices by employing the
microsequencer custom device.

For this commitment, the advantages of a very reliable, fault-
tolerant, self-diagnosing LSI implemented design can be realized. Increasing
the number of LSI devices and the degree of integration of the devices decreases
the size, weight, and ultimately the cost. This approach enhances these
advantages while accounting for the likelihood of LSI induced multiple-bit
errors.




II. CONCLUSIONS

A two fault tolerant, self-diagnosing, highly reliable microprocessor,
capable of providing modest throughput ,has been designed using design guide-
lines based on LSI devices. This microprocessor's execution speed, fault
tolerance, and short mission reliability more than exceeds the selected fly-by-
wire electronic flight control processor baseline requirements. The guidelines
have yielded a design that tolerates the multiple bit error patterns that can ac-
company LSI device operation. Execution of the design has reinforced the design
guideline conclusions: to wit, that architectural considerations are of primary
importance in the design of a self-diagnosing microprocessor. Standardization
of the "optimized" functional partition's interfaces has permitted the definition
of just two custom LSI interface devices that implement the totally self-checking
checkers and the Voter-Switch devices for all of the partition interfaces. This
implementation has resulted in an interface implementation that has sufficiently
high reliability that it does not appreciably degrade the partition reliability.

Top-level functional decomposition of the total requirements has permitted
a bit-slice processor implementation of the application requirements using
commercially available devices. An optional custom LSI circuit, which de-
creases the total parts count of the SDFTP by 15, has been defined. Execution
of the other top-level functions by a computer-on-chip implementation results
in error recovery processing times of the order of 5-10 milliseconds. These
functions include the error vector pattern analysis for fault location and error
management for reconfiguration and recovery. The average execution time should
be in the 5-7 millisecond range, since the longer times correspond to the double
error in the same interface design, which has a relatively low probability.

This SDFTP requires a commitment of about 4.6 times the simplex parts
count. For some applications this may be too expensive,and other designs
should be considered if the fault tolerance and/or reliability requirements
are not as severe as in this application. Single fault tolerance appears to have
appreciably lower parts count while retaining most of the testability features
of the more tolerant design.




III. SELF-DIAGNOSING FAULT TOLERANT PROCESSOR

A. GENERAL DESIGN CONSIDERATION AND OPERATION

The Self-Diagnosing Fault Tolerant Processor (SDFTP) design
consists of triplicated structures. A triplicated bit-slice microprocessor,
as shown in Figure 3, executes the flight control program while a triplicated
monolithic microprocessor manages the bit-slice microprocessor’'s redundancy
(see Figure 4). 'This Reconfiguration and Recovery Unit processes the error
reports generated by the bit-slice processor checkers to determine how the bit-
slice processor should be configured and the sequence of programs that the bit-
slice processor should execute to return to normal processing.

Basically, a bit-slice processor was selected for the flight control
processor because (1) it provided a better match to the throughput requirements
of the flight control application, and (2) its lower level of integration permits
smaller redundant structures to be implemented. The second attribute per-
mits lower failure rate structures to be replicated, resulting in significantly
more reliable designs for short missions. These smaller structures have
been selected according to the guidelines presented in Appendix II. Accordingly,
the bit-slice processor architecture was divided into three parts corresponding
to the three functions of the processor hardware. See Figure 5. These
partitions are the microsequencer, the control store-pipeline register, and
the processor array, which includes the microprocessor bit slices. As shown
in Figure 1, there are three internal and three external partition interfaces.
All of the internal interfaces and the processor array-memory external inter-
face include Voter-Switch devices for changing the interconnections between the
pairs of partitions. Included in each of these interfaces is a pair of checkers
for checking the output and input of the partitions involved in each partition
as shown in Figure 6.

It is these checkers that detect any partition output errors and
Voter-Switch errors at each interface. In addition, these checkers possess
the very significant feature that they can detect their own errors. These self-
checking checkers (S.C.C.) also extend the boundary of protection from the
partitions and Voter-Switches to the periphery of the checkers. Each of the
checkers receives an input from each of the copies of the partition or the
Voter-Switch and develop an error signal corresponding to a check of each
pair of signals. Since there are three possible combinations, each S.C.C.
has three outputs corresponding to these three pairs of signals.

These S.C.C. error signals are used to alert the RRU that an error
has been detected, and to locate the partition,Voter Switch or S,C.C. that has
the error. Each of the Maskable S.C.C.'s shown in Figure 4 combines all
of the error outputs from the bit-slice microprocessor S.C.C.'s and produces
a dual-rail signal that interrupts its associated RRU computer. The interrupt
causes each RRU computer to begin its diagnostic program to locate the error,
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Figure 6. Partition Interface Interconnection
fVoter and Switch and Self -Checking Checkers)

Simultaneously, the S.C.C. dual-rail signal interrupts the bit-slice processor |
clocks and prevents the error signal from propagating bevond the partition

in which it originated. With the bit-slice processors stopped, the RRU's

have time to examine all of the bit -slice processor's S.C.C. output simmals,
without concern that they might change. By reading the contents of one of

the three snapshot registers in the S.C.C., each RRU computer can determine
the source of the error and whether reconfiguration of the bit slice processors
1s required. Depending on the status of the SDFTP the RRU mav read all or
onlyv a portion of the contents of the snapshot register. In some cases, the
error vector associated with each S.C.C. may be sufficient. In other cases,
the entire snapshot may be read out, including the current S.C.C. input vectors
and the immediately preceding microcycle input vectors. Byv comparing these
vectors, the failed partition or device can be located. In some second error
situations, the comparison may require that a self-test program be run, in
which case the comparison inciudes a predetermined value that is known to be
correct. If the snapshot values differ from the precomputed value, their source
is inferred to have failed.

Combining this information with the stored status of the SDFTP, the
RRU computers determine the best configuration for the SDFTP and, if it is
not the current one, determine the commands that must be issued to the
Voter -Switches to produce this configuration. Each RRU controls one of three
sets of voters and switches in each Voter-Switch device. By issuing the proper
command, the RRU computer can select a configuration of one of three channels
in each Vuter-Switch. One of the commands Selects a voter that produces the
majority function of three inputs, corresponding to some bit of the intecrface
data. The other three commands select one of three swilches. Each swilch
connects one of its three inputs to an outpul for each bit of the interface signal. '




g The recommended mode of operation is to use the voter through the

i vecurrence of the second error in the saume partition or voter switch in order
to retain the masking capability of the voter for as long as possible. Hence,
the operating algorithm assumes that the first error is an mconsistent one,
since the expected frequency is considerably higher than that for consistent
(solid) faults: it also assumes that the error will not recur when the program
is rolled back to the last roli-back point. Solid errors of course will be
detected again at the same point in the program and the system will then
be reconfigured using the switehes to select an input signal. Each channel
will use a different swiich so tha the outputs are independent insofar as
possible. The failed channel will have to use one of the remaining two
channels that are still good.

After an error has been confirmed uas being consistent, the Maskable
S.C.C.'s are modified so that the S.C.C. output producing the error is
rendered ineffective in controlling the RRU computer and clock interrupt
signals. This is achieved by allowing the RRU computers {o generate a mask
that blocks out only the signal inputs produced by the error to the Maskabte
5.C.C.'s.

Once reconfiguratior i1s completed, recovery is initiated. For all
of the first errors in a device or partition, recovery consists of turning the bit-
slice processor clocks on and vecloring the bit -slice processors to the last
rollback point in the executing task. The same procedure is followed for all !
second faults that do not occur in the same device or partition. However, ¥
when the error occurs in the same partition or the same part of the Voter-
Switch, the recovery process requires the execution of a selftest program to
identify which of two partitions is faulted. If the self-test program does not
result in the detection of an error, the bit-slice processor automatically falls
throuch the last roll-back point. If another error located in the same place
is detected, the SDFTDP is recontigured and, then, the bit-slice processors are
vectored back to the last roll-back point bv the RRU computers.

When ithie RRU computers ave not processing bit -slice processor
5.C.C. error reports, they are executing self-test and cross-checking each
other. I the RRU Maskable 5.0 O, tails, the associated RRU computer
switches to one of the other two Maskable §.C.C . inputs. In some instances,
this witl be wmeffective and the RRU must reconfigure itself just as it must when
an RRU computer tails . To prevent inadvertent changing of the Voter-Switch
commands, the shift clocks assoctated with these commands are interiocked
by a Clock Controller device that requires a key {code word) and or the
majority of the RRU computers to commuanrd a clock signal.

B. PROCESSOR DESIGN VERIFICATION

The bit -slice processor design used in the SDFTP was verified via
the implementation and testing of a prototype. This simplex prototype
processor design included one copy of the microsequencer, control store-
pipeline register, and processor arrav partitions, as shown in Figure 7.
Here, the demarcation of the partition boundaries are the dotted lines. The
processor has an instruction repertoire ot over 100 instructions, listed in
Table II. Combining a one microserond cvele time memory with the simplex
processor vields a computer that can execute the flight control programs
within the hard deadlines. For tvpical program mixes, the processing rate is
300,000 - 500,000 operations per second, .
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TABLE II

ALPHABETICAL LISTING OF MCP-~T701A INSTRUCTIONS

T Instruction ! Execution
Mnemonic lustruction Deseription Foruut Qpeode 1 Time
RTN Return from Subroutine 4 I2FXX 1.0
RINT feturn from Interrupt Routine 4 {, 22%X ) 5.0
SBD Subteact Double from Proyram Memory 1 S4X X : 3.0
S$BDS Subtract Double fyom Scratehpad Memory 2 z COXX 2.5
spsp Set Seratebpad Word Bits Specified i 2 LOT4xX ! 275
SRU Subtract Program Memory Word from UR 1 ‘ 52XX ] 2,0
SBUs Subtract Seratchpad Memory Word from UR ! 2 NEXX { 1.5
SIE Skap If Program Memory Word is Equal to UR | s ! GOXX Po2.0- 2.2
SIG Skip I Propram Memory Word is Greater than UR | 1 o OEXX joo2b2
S Skip H Provram Memory Word is Less than UR | 1 ;o 62XX roo2n-22
sty Set Indicator (Left Byte) - Tmmediate ; q ¢ 1TDOXX [ 1.25
Sty Set Indicator (Right Byte) - Immediate ! 4 fOIEXX 1.2%
SISE Swap If Seratchpad Memory Word is Equal to UR i 2 ‘ 1BXX .75~ 2.0
SI3G ' Skip if Scratchpad Memory Word is Greater than UR ' 2 3 XX 1 1.75 < 2.0
Sist, Skip If Scratchpad Memory Word is [ess than UR [ 2 o DCXX i 1.7%-2.0
SKLB Skip On Indicator (Left Byte) - Immediate ; 4 boinxx ;125 - 1.5
SKR SKipOn Device Ready Lo Popaxx 0 name2.n
SKRRB Skip On Wndicator (Right Byte) - Immediate \ q f 1CXX ! 1.20-1 0
‘ SKS@3 Skip On Scratchpad Word flits Specified 3 TCNK 2.0 2.25
$1.7 Shift UR Lell - Enler Zeros 4 FAIS SN 1.9+, 20}
$ SLZD Shift Double Left - Enter Zeros 4 XX Lo2n e 250
SLZX Shaft Pouble Teft By XC - Enter Zevros 4 21K | TRV ATRY
" SR Shi{t TR Right Circular ' 4 JANK S D
L ospen Shift Double Right Circular ) 4 2HRY IS R RN TS
SRS Shift UR Rught-Repeat Sign . 3 AN 1,00« 20
SRSH Shift Double Right - Repeat Sign 4 2HXX 1.2 20 )
SREX Smit Houble Right by XC-Repeat Sign ' 4 ; 208N Looos 200
SRV, Shift UR Right-Enter Zeros ‘ 4 } JUXX R PRI P
SRZID Shift Double Right - Enter Zeros | 4 L 2TRX [ I SR A Ty |
B SSRGS SO PR R -
- T T o ) Tt 7]:;\5‘;1 rﬁ('llvm ‘41, o - “I’ - Poaecutiom 1
Mnemome | ’ Instruction Deseription Format | Opeoae | Tane
L T A U ) SR SR .
STAS Stove XA in Seratehpad Memory 2 AOXX 1.75 ‘1
STRS Store XB in Scratchpad Memory 2 AIXX | 1.75
$TCS Store XC in Seratchyad Memory 2 ABXX } 1.7
STHS Store Dauble in Scratehpad Memory 2 BUXX 3.0 )
STLS Store LR in Scratchpad Memory 2 DHX X 1,75 |
STU Sote UR in Program Memory 1 4UXX 1.0 |
STUS Store UR in Scratchpad Memory 2 GAXX 1,79 :
TSU Transfer Sit to UR 4 13XX 1.25 |
TUS Transirr 1'R to SR 4 FAXX 1.29
XUA Exchange UR and XA 4 10X X 1.75
‘ Xxug Exchange UR and X1} 4 1IXX 1.0
! XuC Excnange UR and XC 4 $2XX 1.75
X, Exchange UR and I.R 4 0¥ XX 1.70
ZRD Zero Double (UR and LR)Y 4 15%X ) 1.5
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TABLE II - (Continued)

Instruction i Ex e A"unA{
_h_‘,'l“"“’ﬂif_; o Instruction escription Format Opcode : Piine ]
ABSD Absolute Value of Double Register 4 1AXX : 1.2 - 020
ARSU Absolute Value of UR 4 19XX | 1.25 - 1.7% l
ADRA Add to XA (Riyht Byte) - Immediate 4 00 XX i 1.25 ‘
ADBB Add to XB (Right Byte) - Immediate 4 . ODXX ‘ 1.25 i
ADBC Add to XC (Right Byte) - Immediate 4 | 0mXX 1.9 i
AN Add to LR (Right Byte) - hmmediate 4 ‘ 0pxx [ 1.9 |
[ ADRG Add to UR (Right Byte) - Immediate 4 GAXX | 1.2%
| ADD Add Double from Program Memuory : HOXX 3.0 |
| ADDS Add Doubie from Scratchpad Memory 2 BOXX 1 2.5 1
‘( ADMS I Add Doubfe to Scratchpad Memory 2 BEXX l 4.25 |
| ADU | Add to UR from Program Memory 1 4EXX 2.0 ;
: ADUS I Add to UR from Seratehpad Memory 2 ACXX ‘. 1.9 1
AMS © Add UR to seratehpad Memory 2 BAXX ‘ 2.5 :
Chsp ] Clear Seratchpad Word Bsits Specified 3 THRX | 2.0 '
. clrn i Clear Indiecator (Leit Byte)-Immediate 4 1HXX ‘ 1.25 !
| CIRB Clear hdhicator (Ripht Byte) - Immediate 4 20XX | 1.25 ;
| CILR } Clear Device Controller 2 FHXX | 1.25 |
]‘ CLRI | Clear Interrupt Specibied 4 23XX 1.25 ]
| CrLp P Complement pouble Repister 4 18XX { 1.75 - 2.0
CpLU Complement UR 4 17XX 1.5 .
mvy 1 Divide Daouble by Program Memory Word | 1 HEX X l
DIVS ¢ lnvide Double by Scratchpad Memory Word 2 CHXX
S87Z ' Deerement wad skip 1f Seratchpad Word is Zero 2 FONX ‘ 2.
ENRL Enable Deviee to Interrupt 2 FOXX
INHB ! Inhibit Dwvice from Interrupting ‘ 2 FOXX ’
INV | Invert UR 4 l 16XX
JINT Jump e Servicee Interrupt 4 i 2IXX l
! JMDP Jump Unconditional | 1 {ohIXX !
| JMPI Jump Unconditional, Indirect 1 ‘ XX '
JMS ' Jump to Subroutine 1 { 68X X ‘
JMST Jump to Subrouline, Indirect 1 | GAXX 1
e o e e o e e e e e e e e = R
['—'——-’— Instruction . Execution |
Mnemonic Instruction Description Format Opcode i Tune l
JSNS Jump After Interrupt Sense 2 Fa4XX L .
LALB Load XA (Left Byte) - Immediate 4 02XX { 1.20 .
LARRB Load XA (Ripht Byte) ~ ITmmediate 4 ) 0TXX | 1.0 §
LBLB Load X B (Left Byle) - Immediate 4 03XX | 1.25 ,
LBRB Load X B {Ripht Byte) - Innncdiate 4 ORX X | 1.5 :
LCLB Load XC (1.eft Byte) - Immediate 4 NIXX 1.2% |
LCRD Toad XC (Ripght Byte) - Immediate 4 09xx | 1.09
LDA Load XA [rom Program Memory 1 46X X ‘[ L f
LLDAS Load XA from Scratchpad Memory 2 BhXX | 1.5 1
L.hB Load XB from Program Memory 1 48X X ‘ 2.0 :
LDBS Load X B from Scralchpad Memory 2 BOXX ! 1.5 ‘
LDhC Load XC from Program Memory 1 4AXX t 2.0 »
L.DCS Load XC from Scratebpad Memory PA 90X X 1.5 .
1.DD Laad Double from Program Memory 1 44XX 3.4 }
LDDS Load Double from Scratehpad Memory 2 BAXX 2|
LDL lLoad LR from Program Memory 1 42X X | 2.0 ]
LDLS Load LR {rom Scratchpad Memory 2 80X X 1.5 }
I.hu Load UR from Progranmt Memory 1 40X X 2.0 l
L.DUS Load UR from Scratchpad Memory 2 1C XX 1.5 ‘
LLLR Load LR (Left Byte) - fmmediate 4 01X X .20 |
LILRB Load LR (Right Byte) - Immediate 4 06X X 1.25 }
LULB Load UR {Left Byte) - Immediate 4 onxy 1.25 !
LURDB Load UR (Might Ryte) - Imme diate 4 0H%X 1.25 |
MPY Multiply UR by Program Memory Word 1 S6XX 6,0 }
MPYS Multiply UR by Scratchpad Memory Word 2 CAXX h.75 |
NDOU And to UR from Propgram Memory 1 5AXX 2.0 i
NDUS And to UR from Scratchpad Memory 2 CCXX 1.0
NR M Narmitlize Double 4 2 XX 2.0 .2.’)(:\!}
ORU Or to UR from Program Memory 1 SCXX 2.0 ;
ORUS OR to UR from Scratchpad Memory 2 DOXX 1.5 |
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C. INTERFACE MODULE DESIGN

In between the triplicated partitions of the bit-slice processor are
the partition interface modules as shewn in Figure 8. These modules are a
combination of partition output SCC's, Voter-Switches, and partiticn input
SCC's. The function of the SCC's is to produce error patterns so that the bit-
slice processors can be properly reconfigured to switch out a failed partition
or part of an interface module. Using the Voter-Switch devices, the faulted
device can be isolated while maintaining as high a level of redundancy as
possible throughout the design. The usage of these devices in the interfuces
is described next. For more detailed information see Section II1-G, Custom
Devices.

SWITCHES

VOTERS

COMBINER
N —

VOTER & SWITCH
¢ ~ 350 GATES

* 61 PIN

Figure 8 Voter and Switch and Self -Checking
Checkers

1. Self-Checking Checker Without Mask

The §.C.C. detects errors ir its inputs as well as any faults in the
checker itself. In a self-checking circuit such as the S.C.C. the inputs and
outputs are encoded so that any assumed fault within the circuit, or any non-
code input, produces a non-code output tcr at least one of the normally occurring
inputs. The validity of the output code words is checked by a check circuit that
produces valid/invalid indications. The check circuit is also designed so
that it is self-checking and produces the same "invalid" indication for a fault
in the check circuit as for non-code inputs. So called "totally self-checking”
(TSC) circuits, which are one of the classes of self-checking circuits, were
proposed by D.A. Anderson (1), This class of circuit has the property that
an assumed fault never cauces an erroneous code output in addition to the ’
attributes alreadv cited. (For a rigorous definition of TSCC see reference 4.) i




In this flight -control application, the fault model selected is the
so-called "stuck-at model,” where hardware failures in a circuit are modeled
as some logic gate input or logic gate output lines stuck-at-1 (S-a-1) or stuck
at-0 (S-a-0). Faults are said to occur when one or more lines become S-a-1
or S-a-0. Thus, when a single line is stuck, a single fault is said to have
occurred. Multiple faults, where more than one line is stuck, may occur. If
one or more lines become stuck at the same logic value, i.e. 1 or 0, a uni-
directional fault is said to have occurred.

Once the fault model has been elected, the checker code can be
determined. The choice of the code can strongly affect the nroperty of the
checkers and functional blocks. Constant weight and unordered codes have
been suggested (2, 3) for the design of totally seif-checking circuits. These
codes are used because the structure of the functional blocks and the assumed
faults always lead to unidirectional errors (4). Unordered codes have the
property that they can detect any unidirectional error. A consequence of the
use of unordered codes is that totally self-checking checkers must be built to
check them.

The code selected for the bit -slice processor partitions is the
triplication code, which is then partitioned into a trio of duplication codes
for input to the S.C.C. The code selected for the S.C.C. is the dual-rail code.
Thus, within the S.C.C., one of the signals of each of the pairs of signals of
the triplicated partition signals is inverted. Inthe S.C.C. device up to 16 ¥.
triple inputs can be checked. Within the S.C.C.'s, each of the three nairs
of signals is checked by a self-checking tree consisting of 4-out-of-8 T.S.C's
as shown in Figure 9. The output of each tree is a dual-rail signal, in
which an error is indicated by a ¢-0 or 1-1 combination. These three tree
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Figure 9. Totally Seif-Checking Checker (TSC) 1
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outputs are combined with snapshots of the three current input signals, and
the three inputs from the previous microcycle. These signals are saved in
three separate scanning registers as shown in Figure 10. These three
snapshots are identical except for the error field. The 6-bit error vector

of each snapshot is rotated with respect to the other two snapshot error fields
so that the dual-rail output of each of the three T.S.C. trees is available
externally. This permits a check on all input signals to the S.C.C. The
field definitions of the scanning register are shown in Figure 11.

By clocking the inputs and outputs of the three T.S.C.'s into the
three snapshot registers every microcycle, the current status of the interface
is captured. The current input (i) is shifted down to the previous microcycle
input field (i-1) on the occurrence of the next clock cycle. Thus, where an
error is detected by one of the S.C.C.'s it causes the RRU Maskable S.C.C.
to indicate an error, which stops the processor clocks that clock the snapshots
into the snapshot register. Thus, the cause of the error and its location are
available for diagnosis by the RRU. Each snapshot register can be clocked by
a different processor clock if desired.

Similarly, each snapshot register can be examined by clocking out the
contents. Inthe SDFTP, the RRU shifts out the snapshot by supplying a shift
clock to each register. Hence, the snapshots can be read independently by the
RRU computers. This occurs after the error outputs have been processed to
turn off the processor clocks, and the RRU computers have been alerted that
an error has been detected by being interrupted. The contents of the scanning
register can be repeated since the information is recirculated as it is read out,
if an error is detected during the first read-out. Under some conditions only
part of the snapshot, such as the error vector, may be read out.

The outputs of the S.C.C. are connecfed to the RRU Maskable
S.C.C. trees and to the Input Buffers of the RRU computer. Each of these
S.C.C. trees combines all of the S.C.C. signals of the devices, located at
at the interface, into a single dual-rail signal, which interrupts its associated
RRU computer and bit-slice processor clock. The other connection of the
interface S.C.C. involves only one third of all of the S.C.C. outputs. Each
RRU computer is connected to only vne of the three scanning registers of each
of the S.C.C.'s. By connecting the second and third scanning registers of
each interface S.C.C. to different RRU computers, all three computers have
complete but independent access to the error vectors and S.C.C. inputs. By
shifting these scanning registers out under the shift clock control, as much of
the snapshot can be obtained as needed for diagnosis.

Since each S.C.C. without mask can handle 16 or less inputs, all
of the four interfaces require just two devices, with the exception of the control
store-processor array interface. This interface requires six devices since
there are less than 48 signals that must be protected at the partition output
and inputs. Thus a total of 12 devices are needed per SDFTP.

2. Voter-SwiE_h

After a detected error has been diapnosed the connections between
the bit-slice processor may need fo be changed, and the status of the Voter-
Switch devices at each interface, which permit this automatic reconfiguration
under the control of an RRU computer, mav be altered. Each Voter-Switch
device incorporates a triplicated set of circuits for nine triplicated signals,
Elach circuit consists of a three input voter and sect of three switches. Both
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the voter and the switches receive the same triplicatea signals as shown in
Figure 12. The voter computes the majority function of the three inputs

while the switch selects one of the three inputs for transmission to the out-

put. Only one or the other is connected to the output at any one time and the
connection is controlled by a command register that can be set externalty.

In the case of the SDFTP, the RRU computer transmits the command from its
output buffer to the Voter-Switch in serial form. The information is then clocked
into the command register by the command clock, which is also supplied by the
RRU computer. Each of the three sets of nine input signals is controlled by a
separate command register. For the SDFTP application each command register
is controlled by a separate RRU computer and can be loaded independently.

In Figure 12 a single bit slice is shown to the right of the dotted line and the
three command registers are shown to the left of the dotted line. Each
command register controls one of the three voter-switch circuits.

The voter-or-switch (VOS) bit of the command dictates which
device.voter or switch, will provide the output . When VOS is a "1". the voters
are selected while "0" selects the switches. The command bits C1, C2, C3
determine which of the switches is connected to the input. A "1" in any of
these three bit positions selects the corresponding switch: i.e. Cl=1the
top of the three switches. Only one switch should be used to maintain the
independence of the channels.

A total of 10 of these devices is required to provide this function
fc » all of the SDFTP interfaces. The processor array-microsequencer and ¥
microsequencer control store interface each require une Voter-Switch device.
The processor array-memory interface requires two devices while the control
store-processor array requires six.

D. RRU OPERATION

1. Architecture Review

First, the architecture of the error reporting system will be
reviewed because a good understanding of the various parts of the system and
the way they interrelate will make it easier to understand the overall operation
of the RRU.

Figure 13 is a simplified overview of the processor and the SCC's,
Each of these components is discussed in detail in Section III G. The basic
processor partitions, including the microsequencer (us) control store (CS)
and processor array (PA) are shown separated by voter swilches labeled V 'S.
The control store and processor array require more than one voter switch
to handle all their output leads. The three processor channels are illustrated
with a three-dimensional effect.

Errors are reported by SCC's. A net of three TSC's labeled "out”
is connected to the output of each processor partition. Likewise, the TSC's
labeled "In" are connected to the input of each processor partition. These
circuits check for errors at the input and output of each processor partition
and provide sufficient information to locate errors in either the partitions
or the switches. The error signals from these partition SCC's are merged :
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Figure 13. Processor System Overview

together via special masked SCC's, which provide interrupt signals for each
of three RRU's (reconfiguration recovery units). The interrupt signal is
generaied whenever any unmasked error is obtained from the system.

The interrupt signals cause the RRU's shown in Figure 14 to go to
an error processing routine, which determines the cause of the error and
issues the appropriate commands to switch data signals around the fault in an
optimum manner,

The RRU processors are implemented with monolithic microprocessors
with appropriate memory and /O circuits. They are described more fully in
Section IIT E. The RRU processors are operated independently for the most
part. They are loosely synchronized in that they can communicate with each
other and the maintenance panel by handshake sighals. They also perform a type
of synchronized control when turning on the processor clocks such that the
processors are locked together. The interrupts that initiate the error response
processing are also provided in triplicate and each RRU processor can select
any one of the three. :
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It is important to understand, in some detail both the manner in
which the processor svstem can be reconfizured with the voter switches and
the way in which the error signals are derived. The RIL D svstem is the link
from the error signils to the voter switch controls. The number 2 voier
switch and the 2 OUT and 2 IN SCC’s are shown in functional detail in
Figure 15. FEach voter switch receives all three channel signals coming from
the microsequencer. The voter switch outputs can be derived by a vote of
all three inputs or thev can be switched directly to any one of the three itiputs.
Initially, the voter is used so that a single microsequencer failure is masked
by the voter. Should two microsequencers fail, then each switch i€ set to use
he one remaining microsequencer as an mput. Each of the following control

stores (CS) would thus receive « correct input

The number 2 OUT SCC is connected to the outputs of the three
microsequencers as shown in Figure 15. Likewise, the number 2 IN SCC is
comnected to the inputs of the three control stores. The e, error signal is
derived by comparing channels 1 and 2: and ey is derived from channels
2 and 3 and eq from channels 3 and 1. The number 2 SCC IN error signals,

e, e2' and 93' , are derived in a similar fashion from the 1°, 2" and 3’

signals.

The interpretation of these error signals is as shown in Figure 16,
Failures assoctated with each error pattern are listed here. The interpretations .
of the first fault 1s relatively straightforward as indicated by the entries in the ¥
colurmm titled Siugle Faults. The only entry that nught seem confusing is the
interrupt error. This is detected wh n an interrupt vields no error signals
in ony of the SCC's. Since the SCC ovutpu = are only examined after an
interrupt has occurred, the only conclusion that can be reached is that the
interrupt circuitrv has failed. The RRU circumvents the problem by switching
its interrupt input to one of the other two interrupt signals.

Consider, now, the problem when a second fault is sensed in a
single output SCC. There are several possibilities for each of the double
error patterns. The RRU's now must resort to either running processor
diagnostics or performing a series of sequential tests to determine the cause
of the second fault.

The operation of the system, where two faults occur in the same
SCC partition is best described by an example. Assume that the first fault
is the failure of the channel 1 microsequencer. The second fault is then
assumed to be the failure of the channel 2 microsequencer. This can result
in a situation where all three error signals indicate errors. As seen in
Figure 16 even though channel 1 had been identified as the first error it
may be impossible to determine whether the second fault is due to a failure in
channel 2 or 3. Thus, a processor diagnostic is run to determine which
channel is at fault.

Another example is the failure of SCC 1 followed by the failure of
microsequencer 1, having an error pattern consisting of eq and e,. However,
it is not clear whether the second fault is due to a SCC 3 or a channel 1 '
failure, since either of these failures in combination with the original SCC 1
failure vields the same error pattern. Here, a sequential test is used.
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The SCC 3 error is masked and the voter 'switch is switched to the channel 1
input and the main processor is restarted. If there is no error interrupt then
the second failure was, in actuality, an SCC 3 error. But if the failure was
microsequencer 1, the input SCC following the voter ‘switch will indicate a
channel 1 error, since channel 1 is being compared to the other voter outputs
at this point. Upon detecting a channel 1 error the swiich is either thrown back
to the voter position or to channel 2 or 3.

It should be emphasized that these double-fault problems occur
only when two faults are reported by a single SCC. Two faults each occurring
in different SCC's are processed as successive single faults.

Two simultaneous faults in a single SCC are recognized, and
diagnostics are used to determine any failed channels. The remaining faults,
if any, are assumed to be SCC errors.

The error interpretation for input SCC's is similar, with the ex-
ception that the channel errors are now caused by voter 'switches. A failure
here results in switching to a good function input. This causes the error
pattern to revert to the no-error case, and a second error of this type will
cause a single fault pattern and be easily detected and identified.

Maps of the system errors for three system states are shown in
Figure 17. The map is laid out in the same order as the system components
shown in Figure 13. The blank boxes represent the SCC's and the other
boxes are the other elements in the system as labeled. The first map
illustrates the no-error conditions. The second map indicates e, and e
errors in SCC 2 QUT, which is a channel 1 ys fault. The third map adds a
channel 2 voter /switch fault to the previous fault, resulting in ey and eq
errors in SCC 4 IN.

The voter ‘switches each switch nine bits of data, whereas the SCC's
report errors in 16-bit slices. This results in some overlap of switchable
slices between SCC's for the design described. This situation is depicted
in Figure 18, An example is SCC 3b, which monitors parts of slices 3b,
3c and 3d. There is no way to determine which 9-bit slice caused the error
by examining the error signals alone. Currently, the system assumes that
all three slices are bad and acls accordingly. It would be possible to distinguish
between these slices if the actual data are read from the SCC registers.
However, this would take considerable time and there seems to be no advantage
to isvlating the fault to one slice for reconfiguration purposes. The exact
locations of the fault for maintenance purposes would be accomplished by the
RRU self-test programs.

2. Error Response Operations

The initial part of the RRU operational flow diagram, which performs
the error interpretation and reconfigures the system via the switches, is
shown in Figure 19. When the main processors are running, the RRU's are
either idle or running self test, waiting for an error interrupt. When the
interrupt occurs, the errors are read by the RRU processors via their I O
ports. The e signals from: all the SCC's are available to each RRU. These
are the same signals that are merged together with the masked SCC’'s to
provide the interrupt signals.
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Figure 17. System Error Maps

SCCH# 1 2 3a 3b 3c 4

Bits 1-16 1-16 1-16 17-32 33-48 1-16

Switch
# Bits
PA COND 1 1-6 X
MS 2 1-9 X
CS 3a 1-9 X
3b 10-18 X X
3¢ 19-27 X
3d 28-36 X X
3e 37-45 X
3  46-48 X
PA 4a 1-9 X
{ 4b 10-16 X

Figure 18. Switch Fault Error Reporting
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The order of the e signals on the RRU ports for one of the RRU
computers is depicted in Figure 20. All eight bits of port 1 and four bits
of port 2 are used. The signals are obtained by shifting them out of the
SCC registers, starting with e, and ending with e,,. The order shown in
Figure 20 is the order for the channel-1 RRU processor. The channel-2
processor receives the e, signals followed by e, and then e The channel -3
processor receives e flIZSt followed by e and €,, in that oxlder The orders
cannot be the same because the same output pins must supply the masked
SCC's with all three error signals in parallel. The RRU must send a clock
to the SCC's each time it wants a new set of error signals., The signals on
one port are all read at the same time. An error is recognized if any e
e. pair are the same. The normal flow then continues to the box in Flgue 19
libeled "save new error from lowest numbered SCC". The logic must reject
all error signals from previous faults that have been processed. These errors
remain in the system and may be read each time an interrupt is generated.
(They are prevented from causing interrupts by masking in the merging SC™ "< )
The logic then selects the error bit combinations from the lowest numbere. 507
This ensures that only one new error will be processed at a time.

The next step in the flow diagram of Figure 19 is to determine
whether this error report already exists in a fault list of previous detected
faults. If it is not in the list the error is entered in the list and processing
is resumed, If this error has already occurred once it will be in the list. A
particular error is not designated a fault until the second time it occurs. This
prevents transient errors from reconfiguring the system needlessly.

Once a fault is detected it is tested to see if it comes from an input
or output SCC. If it is an input error some processing is always needed. It may
involve running a diagnostic or just reconfiguring. I[f the ervor is from an
output SCC it is checked to determine whether it is the first or second faull in
the SCC partition. A single partition faulc is generally masked by the following
voter and no reconfiguration is needed. Second faults are generally more
complicated and require running some sort of diagnostic. The exact logic path
followed by a given fault is determined by the particular combination of faults.
There are several special rases that do not follow this diagram exactly.

A flow diagram showing the processor diagnostic procedure in more
detail is given in Figure 21. The diagnostic is selected by the RRU sending
a diagnostic starting address to the processor. The RRU then sets the
interrupt circuits into a mode that only allows interrupts to be generated at
the end of the diagnostic. If this were not done the processors would be
stopped as soon as the first error appeared in the diagnostic run. The RRU
processors, however, only know the correct results obtained at the end of
the diagnostic. Therefore, the diagnostic must run to completion to permit
the RRU to determine which channel has failed. The diagnostic is started by
enabling the main processor clocks; it then runs until the resuits at the end
of a diagnostic are in error at which time an interrupt is generated. Flags
are tested to determine which routines should be run to interpret the test
results.

The major steps in the reconfiguration and masking processes are

shown in Figure 22, The first step is to generate the proper code word
to enable the clock signals needed to change the voter switch state. The
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A
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TO DETERMINE
PROPER PROCESSING

v
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'

Figure 21, Diagnostic Flow Diagram
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requirement of generating a code to turn on the clocks makes it quite unlikely
that a runaway RRU could accidently gain access to the switch controls. The
next step in the reconfiguration is to create a switch command message from

the fault information. This command is then sent to the switches.

In addition to setting switches the new errors must be masked from
the interrupt circuits; otherwise they will continue to generate interrupts. This
is done in a manner similar to the wayv in which the switches were changed. A
new mask image is created from the fault information and sent to the masked
SCC's. Again, a clock signal is required to send the mask to the SCC's. This
clock signal is enabled by the same code wordthat enabled the switech command
clock.

The main error processing flow diagram is completed in Figure 23.
Once reconfiguration is complete, or it is determined that no reconfiguration s
needed, the processor is sent the address of the rollback routine. The roll-
back routine causes the processor to resume execution of the applications
program that was interrupted by the error. The execution starts at a prior
point, where the state of the processors and all interim computations were
saved. Thus, the computation is restarted at a point that was unaffected by
the error: the execution is restarted by signals that start the processor
clocks in synchronism.

SEND ROLLBACK
ADDRESS TO PROCESSOR

v

START PROCESSOR
CLOCKS

RRU'S EXCHANGE
SEATUS

REPORT RESULTS

A
WATT FOR
INTERRUPT

Figure 23. Final Part of RRU Operational
Flow Diagram
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The RRU's now exchange system status information off-line without
interfering with the processor operation. The main purpose of this exchange
1s a form of self test to ensure that each processor reached the same result.
Should there be any disagreement, the bad RRU processor will be declared
down. This status exchange is also needed when failures occur in the
interrupt svstem, since these errors are not normally monitored by the other
RRU processors and a status exchange is the only wav to update the status in the
other RRU processors.

The results of reconfiguration are then reported to the maintainence
system, which accepts status reports from each of the processors. If one
differs 1t assumes the disagrecing RRU processor is bad. At this point the
RRU's return to the idle or selt-test loop they were executing when the
original interrupt occurred.

3. Self Test Operations

The self tests described in this section are a form of built-in tests.
Thev muay be used at any time to determine the operating condition of either
the processors or the RRU system. This is i contrast to reacting onlyv to
errors detected during application program execution, as described in the
previous section. The self-test operation does require the cooperation of the
bit -slice processors for all tests except the RRU processor diagnostic. Thus, #
the processors will not be available for execution of application programs
during most of the testing. The self tests require many iterations of test i
sequences with resulting long execution times. The entire sequence of tests, L
if performed at vne time, could last for several seconds.

The self-test capability would be used to determine the status of the
svstem, bhefore and after a mission, to ensure that there are no failed
components. A second use for the self tests is to augment the error response
operations. The error response operation cannot directly detect errors
such as a partial RRU processor failure. It will diagnose such {ailures as a
control faiture in etther a vote switeh or as an SCC failure. The svstem
witll, however, be ¢arrectly recontigured but 1t mayv take a longer time to
determine the correct reconficuration than it would have if the error had
previously been detected by self test. An example best illustrates this point.
Assume that the line in the I Q port that controls a given voter switch module
15 broken and undiscovered. Then the voter fails as a second fault. The error
response svstem will then attempt to switeh to Channel 1 1o bypass the voter.
However, since the RRU 1s broken, nothing happens. As soon as the processors
beuvins execution the voter causes another error interrupt. The error response
svsten now assumes the channel - 1 switchis bad and tries to switch to channel 2.
This sequence of restarts continues until all channels have been tricd and the
entire voter switch is declared down. If the self tests had been run, the bad
switch control operation would have been previously detected so that, when
the voter failed, the svstem could immediately declare the entire voter switch
down and act accordingly.

The price for this added speed is a loss of processor time and
additional program memory i the RRU's. The loss of processor time could
be alleviated if there was a method of running the self tests periodically during .
the mission, vhen the processors were not needed for executing application
software. This would, of course, depend on the exact nature of a given nssion.




A flow diagram for the self tests is given in Figure 24. Each of
the tests is summarized in Figures 25 through 27. The first test is the
RRU processor self-test. This test does not require the main processor
and so may be run concurrently with applications software. It is an instruction
diagnostic that makes simple computations and compares the results to pre-
computed values. Two bits on the 1 ‘O ports are provided for testing1 O
instructions.

The next test isan exchange of data via the intercommunication 1 O
lines. It tests these lines as well as provide an opportunity for the RRU
processors to update the status of the system in each RRU processor. This
routine also runs concurrently with the main processor application software.

The voter switch test, the RRU clock controller test, and the SCC
error detection and masking test all require the cooperation of the main
processors. These tests are similar in that they attempt to exercise all
parts of the RRU system by using the main processors to provide known test
vectors at all partition interfaces. Manipulation of these test vectors coupled
with the reaction of the RRU system provides a means of diagnosing RRU
tailures. These tests all rely on the error response system to sense the
state of the errors in order to make maximum use of that software. These tests
are quite involved and lengthy and are split into segments so that only one seg-
ment need be executed at a time. thus minimizing the length of time that the main
processor must be tied up performing self test,

E. RRU DESIGN
1. Hardware Components

A block diagram of the RRU system s shown 1n Figure 28.  The
error reporting SCC's, while not shown i this diagram, are constdered a
part of the RRU. The tunctions and circuit details of the error reporting SCC's
the masked SCC's, the voter ‘switches and the main processors are described
in detail elsewhere in this report. The only description of these modules in this
section will be to describe their interface with the RRU processors™

bl

The central control of the RRU lies in the RRU processors. Their
primary function 1s to read the state of the system as inputs through their input
ports and then compute the appropriate controt signals to be output via their
autput ports.,

in addition to the RRU processors and its [ O ports there are tripli-
cated RRU clock controliers and main processor controllers. The RRU clock
controller’s function 1s to himit access to the control of the error reporting
SCC registers, the masked SCC mask registers and the voter, switch switching
commands . It does this by gating all the clocks entering these functions from
the RRU processors. The reason for providing this function is to reduce the
probability that a failed RRU processor could inadvertently fail the entire sys-
tem by randomly manipulating the SCC's and voter.switches. There are three
wayvs of enabling these clocks, all of which require a different code word to be
calculated by the RRU. The first method uses the voted outhuts of the inter-
rupts from all three channels. Thus, anvume a normal error interrupt occurs
the clocks can be enabled with a code word. The second method is to enable
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them when running tests by voting test control signals from all three RKRU
processors. This, together with the RRU processor-generated code word and
a test signal from the main processor, will allow generation of clocks for
testing. The last method enables the clocks when two of the RRU processors
are down. It does this with just the good processor’s interrupt signal and a
code word. The RRU clock controller is described in detail in Section [II.G.

The main bit-slice processor controller is used to start and stop the
main processors. s function includes turning off the bit-slice processor
clocks on the receipt of an error interrupt from the SCC's. The controls
necessary to force the processors to start at any one of a number of test
routines or to go to the rollback point are also provided. These controllers
consist of a few gates and flip-flops.

The RRU processors are implemented with monolithic microproces-
sors. The baseline system used Intel 8048 single-chip microprocessors, which
have their own clock oscillators and require only the addition of a crystal and
two capacitors. It also contains 1000 bytes of ROM, 64 bytes of RAM and a
timer on the same chip. The 8748 is another version of this microprocessor,
which has 1000 bytes of EPROM rather than ROM. The 8048 microprocessor
is intended for control purposes and its 1/0 port capability is easily expanded
to large numbers of 1/0 pins. It has a cycle time of 2.5 11icroseconds. Most
mstructions require only one cycle but some do require two cycles. Ilis a
40-pin device.

The [0 ports used in the baseline are Intel 8355 combination ROM
and 170 ports. They contain 2000 bytes of ROM and two 8 bit [,;O poris, which
can be configured on a bit basis to be either input or output pins. Data placed
on the outputs can also be read so they form a convenient means for determining
which data is being outputted, There is an EPROM version designated the 8755,

The 8355 ROM and [/O circuits are connected in a straichtforward
fashion to the 8048. All of the necessary signals to drive the 8355's are present
on the 8048, The 8355's require very little drive current and, therefore, line
driving buffers are not needed. An example of an 8048 connected to one 8355
is shown in Figure 29.

Alternatives to the 8048 microprocessor are etther the Intel 8044 or
8085. The 8049 contains twice the amount of ROM and RAM but 1s otherwise
identical to the 8048. The 8085 is a version of the 8080 microprocessor that
has a self-contained oscillator and timer and is compatible with the 8355 memory
and 1,0 device. Both the 8049 and 8085 are available in faster versions than
the 8048. The instruction repertoire for the 8085 is different from the 8048 so
it is difficult to determine how much faster it might be in this application. Both
of these microprocessors are candidates for use if greater speed is desired.

2. Description of RRU Signals

The details of the RRU design are probably best understood by
describing the function of each signal going to and from the RRU processor,
The input signals are listed in Figure 30 and the output signals are listed in
Figure31. Signal positions in the list will be designated by an I for input
signals or an O for output signals, followed by a letter designating the major
heading and then by its number under the heading. Theefore, the number 1
output SSC signal is designated [AL.
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A. SCC ZRROR/REGISTER OL TPUTS D. I/O0 INSTRUCTION TEST

1. 1 - our 1. IO TEST IN
2. 1 - IN

3. 2 - OuT

4, 2 - IN E. PROCESSOR CLOCK CONTROLLER
5. 3a - Our

6. 3a - IN 1. TESTA

T. 3b - OUT 2. TESTB

8. 3b - IN

9. 3¢ - OUT

10. 3c - IN

11. 4a - OUT

12. 4 - IN

B. INTERCOMMUNICATIONS

READY A IN

READY B IN ,
READY P IN ¥
SEND/RECEIVE A IN ‘
SEND/RECEIVE B IN

SEND,/RECEIVE P IN

DATA A IN

DATA B IN

=1 > WIN —~

C. INTERRUPT 1

1. INT 1
2. INT 2 {
3. INT 3 |

Figure 30. Input Signals




B.

S.C.C. MASKS D.
1. .

5 | MASK 1

3. .

Y |MA5K 2

5. | -

o |MASK3 e
VOTER SWITCH CONTROL

1. vs1

2. VsS2

3. Vs 3

4. V S3b

5. V 5 3¢

6. VS 3d

7. V/8 3e

8. V/S3f

9. V'S 4
10. V S 4b

INTERCOMMUNICATIONS

READY A OUT
READY BOUT
READY P OUT

SEND RECEIVE OUT
DATA OUT

T WO =

Figure 31. OQutput Signals
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The first set of signals to be discussed are the RRU clock controller
signals. As mentioned previously the function of the clock controller is to
limit inadvertent access to those modules controlled by the RRU processor,
The signals OE1 through 4 are the lines over which the RRU processor sends
a code word to the controller. Four parallel lines are used to speed up the
sending of the code word. The code word requires a clock to enter it into the
controller. This clock is signal OES and is simply another output pin, which
i1s alternately set to one and zero by software in the RRU processor.

The next five signals are the actual clocks that are used to clock
masks to the masked SCC's, change the settings of the voter switches and read
the ~rror SCC registers, The last signal OE11 js a signal that is voted with
corresponding signals from the other RRU processors to enable the clocks for
test purposes.

The interrupt signals IC1-3 are the three interrupt signals generated
by the masked SCC's. These signals are provided for testing purposes. The
interrupt system is shown in Figure 32. Each set of masked SCC's generates
an interrupt signal . All three signals are supplied to three switches cach of
which supplies an interrupt to one of the RRU processors. Should this signal
fail such that it creates an interrupt, the interrupted processor will perform
the normal error routines and find no errors to account for this interrupt. It
then samples the INT signal that was passing through its interrupt switch. If ¥
that signal is high then the problem is in the Masked SCC's and the switch can
be changed to use one of the other interrupt signals. If the INT signal was low
then the error is between the masked SCC's and the RRU processor,and nothing
more can be done to reconfigure the system; then that RRU will be declared
down. The other two INT signals are provided for those cases when they are
the signals used to interrupt the RRU processor. The opposite problem -- no
mterrupt is generated when it should be -- is detected when status 1s exchanged
between processors. At this point the affected processor can test the INT lines
and reconfigure as previously described,

Figure 32 also shows signals going from the RRU processors to the
masked SCC's. These are the mask signals OAl-6. A mask image 1s sent
serially in two-rail fashion over two lines. The data are entered by means of
a mask clock, OE6, from the clock controller,

There is one line from each of the error reporting SCC's going to
each RRU processor. They are input signals 1A1-12. The errors as well as
the register contents are read from these lines by clocking them with the
appropriate clock signai, OE9 or 10, from the RRU clock controller. There
is an additional control, OD1, called SCC register select. This connects either
the i-1 register or the i registers to the error SCC output. This is important
when a control store error has occurred. The SCC register at the control store
output must output the current or i value since it is this value that must be
checked for errors. However, the SCC register at the input to the control store
must also be read to obtain the address to be used to look up the correct output
in the control store copy in the RRU processor, The address that caused the
error was the previous or 1-1 vidue, which 1s also stored in the registers. f
the SCC output was not switched to the 1-1 register by the repister select bt
the RRU processor would have to read through the 48 bits of the 1 value first
and this would slow the processime considerably .
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The voter. switch commands, to enable either the voter or individual
channel mputs; are sent to the voter/switches via signals OB1-10, The com-
mand is sent serially out to the appropriate line by clocking the voter. switches
with either the OET or 8 clock signals, which pass through the RRU clock
controlier.

There are several input and output lines used to communicate between
the RRU processors and the maintenance panel. The input signals are [B1-8
and the vutput signals are OC1-5. The ready-in, readv-out and send receive
in and out signals are used as handshake signals between RRU processors and
the test panel. The readyv-in signal signifies that the other processor s ready
to transmit or receive, depending on the state of the send, receive line. The
ready out and send‘receive oul are the handshake signals being sent out by the
processor. Only one send/receive out signal is needed since it can be bussed
to all the other processors. There must be separate ready-out signals so that

only one processor responds at a time. The data-in lines come only toom the
two other processors. since the maintenance panel does not transmit data. The
data-out sienal 15 bussed 0 all the other processors., The processors normally
stay n the receive mode until they wish to transmit. Should the processor that
wias to receive a message switeh to the transmit state at the same tme as the
first processor, the handshakes will prevent the transmission from occurring.
Normually the order of transnnsstons are fixed in the programs so that this
problem does nut arise,

The man processor clock control uses signals OF1-9 and 1k1-2.
The senals OFL-5 comprise an interrupt vector, which 1s sent to the nuan
processor to cause 1t to jump to its next routine. It 1s used to send the main
processor either to a rolfback pomt or to a test routine., The processor is
then restarted using the continue signal. I a test program is to be run, the
RRU interrupt block signal, OF6. is enabled. This signal prevents the main
processor from being stopped, before the end of a diagnostic, by errors carly
11 the diaynostie. s important that this be done because the RRU can only
mterpret test values at the end of a diagnostic . The bypass and test signals
determine whether the other RRU processors are failing to issue a continue
stgnal, m which case it can be bypassed.

The T O test =1ignals, D1 and OD3, are used by the RRU processor
self-test diagnostie 1o test 1its 17O instructions, by sending data out one pin and
reading via the other pim. It can accomplish this without disturbing the data
currently on the other output lines,

The last signal, OD2, 1s a clear signal which can be used by the RRU
processor tomtialize the various circuits in the system,

3. Maskable 5CC Tree

The function of the Maskable SCC Tree of cach of the RRU error. |
processing channels 1s to reduce the large number of signals (12) to a4 simgle
stenal as shown in Figure 32, The SCC outputs of interfaces @ @ and

@ (see Firure 13 for numbered mterface) can be accommodated by one
SCC with Mask, while the SCC outputs of the interface (3Yare dehivered
to the second SCC with Mask, since each of these SCC's can handle 24 mpults




or less . The outputs of each of these devices 1s combined i a second
checker, a four-out-of-eht checker whose dual -rail output 1> cunverted Lo
smgle -rail form by an exclusive OR circult. This 1s done to mateh the RRU s
mterrupt signal requirements.,

These SCC with Mask deviees differ sienificantiy from those used
m the bit-slice processor mterfuces i two wavs., One of these 1s the wider
mput capability. as shown m Figure 33 . Another 15 the incorporation of a
masking capability to block signils known to produce error signals from
descending the tree and producing undesired error indications. The mask s
computed by each tree's RRU computer, based on the current error state of
the SDFTP, and is usually changed after the detection of a solid error. By
having the RRU update the mask after each detection, 1t is possible tor the
SDFTP to continue operating after a number of errors have been detected,
without the known faults continually interrupting the SDFTP every time g
vector occurs that exercises one of these faults,

The outputs of all three of the SCC trees E-OR gatescan be
selected to interrupt any of the RRU computers bv means of a multiplexer as
shown in Figure 32 . These three E-OR outputs are made availuble to the
RRU computer by connecting them to the RRU computer's input buffers. This
permits each RRU computer to isolate failures to the SCC treces,

F. RRU PROCLESSOR SOFTWARE
1. Design

The RRU processor software s givided into o parts . The hirst
part implements the error response processing.,  This processimge was dis-
cussed in Section II1.D and its operational flow diagrams are contamed in
Figures 19, 21, 22, and 23. The second part implements the selt -test proces.
sing discussed in Section III.D and is diagrammed 1 Freure 24, The tunction of
the error response sys. 1 1s to react to errors reported in the sell - checking
checkers. reconfigure the main processors. if necessary . by controlling the
switches, and report the fault to the maintenance svstewn. Hhe selt-test svstem
provides a means of testing portions of the RRU that cannot be cuarvanteed to be
dircctly tested by the self-checking checkers. This function is usetul tor built-
i test functions, to ascertain the health of the svstem before a mission, or to
supplement the error response system by providing intormation that nmuay 1n
some mstances speed up the errvor response processing.

Whenever possible, common routines are made into subroutines to
save program memory space. This usually results in shehtly longer running
times so that only the longer routines are made into subroutines,

The sizing estimates and running times for those parts of the system
that require software diagnostics cannot be accurately estimated, foratas
bevond the scope of this work and is too early in the design to derive accurate
estimates of coverage (percent of circuitry tested) versus program size and
running time. The attendant problems are discussed in some detail in Section
iv.
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2. Program Size Estimates
Frogram size Lsumates

Estimates of the program sizes for both the error response and self-
test software are given in Figure 34. The error response software requires
3200 bytes of memory, the self-test software slightly less, at 3000 bytes.,
However, it is not accuratelv known how much coverage is obtained for this
amount of code. The control store tables in item 3 provide a fourth copy of the
main processor’'s control store to help determine which control store 1s still
functioning after two of the three have failed.

The total program storage 1s 9200 bytes. Each RRU processor has
11,000 bytes of ROM. However, 4000 bytes are connected as data meniory to
access the control store tables move efficiently., The control sture tables re-
quire only 3000 bytes. leaving 1000 bytes unused. If this memory were to be
used as program storage, a few more gates would be needed to give access to
it as program memory. Currently, without this 1000 bytes, there are still 800
bytes of spare program memory.

The self-test software uses the error response software to a large
extent in performing tests. Thus the 3000 bytes for the self-test software is,
in reality, the ¢ mount of additional software needed to perform the self-test

function.
ESTIMATED BYTES ¥
PER PROCESSOR
1. ERROR RESPONSE 3200
2.  SELF TEST 3000
3. CONTROL sTORE TABLES 3000
TOTAL 9200

Figure 34. RRU Program Size Estimates

3. Error Response Timing Estimates

The running time of the error response routines is largely dependent
on the exact combination of lailures in the system at any one time, because of
the many different branches in the program logic. Therefore, the running time
estimates are (llustrated by five examples given in Figure 35.

The first two examples are the same as those illustrated in the error
maps in Figure 17, The first example is the failure of the number 1 microse-
quencer with no other failures in the system. The software requires cach failure
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" 2. Program Size Estmates

Estimates of the program sizes for both the error response and self -
test software are given in Figure 34. The error response software requires
3200 bytes of memory, the self-test software slightly less, at 3000 bytes.
However, it is not accurately known how much coverage is obtained for this
amount of code. The control store tables in 1tem 3 provide a fourth copy of the
main processor’s control store to help determine which control store 1s still
functioning after two of the three have fuiled.

The total program storage 1s 9200 bytes. Each RRU processor has
11, 000 bytes of ROM. However, 4000 bytes are connected as data memory to
access the control store tables more efficiently. The control store tables re-
quire only 3000 bytes. leaving 1000 bytes unused. If this memory were Lo be
used as program storage, a few more gates would be needed to give access to
it as program memory. Currently, without this 1000 bytes, there are still 800
bytes of spare program memory.

The self-test software uses the error response software to a large
extent in performing tests. Thus the 3000 bytes for the self -test software 1s,
in reality, the amount of additional software needed to perform the self-test
function.

ESTIMATED BYTES "' ‘
PER PROCESSOR
)
1. ERROR RESPONSE 3200
a
2. SELF TEST 3000
3. CONTROL STORE TABLES 3000
TOTAL 9200

Figure 34. RRU Program Size Estimates

3. Error Response Timing Estimates

The running time of the error response routines is largely dependent
on the exact combination of failures in the system at any one time, because of
the many different branches in the program logic. Therefore, the running time
estimates are illustrated by five examples given in Figure 35.

The first two examples are the same as those illustrated in the error
maps in Figure 17, The {irst example is the {ailure of the number 1 microse-
quencer with no other failures in the sy<stem. The software requires each failure
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- Estimated Time in Microseconds

Off Line
Ist 2nd Sum of Status
Error Error Ist & 2nd Reporting
1. Microsequencer 1 Failure 1800 2000 3800 16,400
2. Microsequencer 1 Prior Fault 2400 3400 5800 16,400
Plus a Current Failure in V/S 2
SCC 4 (Port 2)
3. Microsequencer 1 Prior Fault 2100 3100 5200 16,400
Plus a Current Failure in V.'S 2
sCC 2 (Port 1)
4. Microsequencer 1 Prior Fault 2100 8200 10,300 16,400
Plus a Current Failure in
Microsequencer 2, This is a
second fault in a partition,
2. Microsequencer 1 Prior Fault 1400 2200 3600 16,400
Pius an Interrupt Circuit
Failure

Figure 37. Error Response Timing Estimates

to occur twice before 1t s detected as a fault. This prev. ats transient errors
from necdlessly reconfiguring the system. Thus a failure of the number 1
sequencer will cause the error response software to take 1.8 milliseconds to
process the first occurrence of the error. If the error is a hard failure, the
system will immediately be interrupted with the second error, which takes two
milliseconds 1o process. Thus, the main processors will have been off-line for
the sum of these two times as indicated in the third column in Figure 35. This
example requires a total of 3.8 milliseconds before the main processors are
restarted at the previous rollback point.

If this error were onlv a transient then only the 1.8 milliseconds for
the first error would be taken away from the main processor.

The RRU then takes an additional 16.4 milliseconds to report the
failure and checks that all RRU processors have reported the same failure.
This reporting process is the same for all tests,

The second example adds a Voter-Switch error to the number 1 -
crosequencer failure. The errors are reported through a different port for
this Voter-Switch, slightly affecting the timing. The time to process the two
errors 1s 5.8 milliseconds.
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The third example is similar to the second example, except that the
Voter-Switch error is reported through the same port as the microsequencer

error, reducing the running time by 0.6 of a4 millisecond -- to 5.2 milliseconds.

The fourth example is an example of two failures in one partition.
which is more difficult to handle. The processing time has almost doubled here
because a microsequencer diagnostic must be run in the main processor. The
total time required here is 10.3 milliseconds. The running time, in this case,
is largely dependent on a main processor diagnostic running time, for which
no accurate estimates are available.

The last example illustrates an interrupt circuit failure, where the
interrupt is stuck in the "ON" state. This failure requires 3.6 milliseconds.

Thus the typical error-handling times range from 3.6 to 10,3 milli-
seconds.

4. Self Tesl Timing Estimates

The self test timing estimates are given in Figure 36. The RRU pro-
cessor tests which take 23.7 milliseconds, are run without disturbing the main
processor operation, The cooperation of the main processor is required to
carry out the bulk of the testing on all the switches, self-checking checkers und
other miscellaneous circuitry. The running time for these tests is given as
item two in Figure 36. The complete set of tests is estimated to run for three
seconds. This i1s not objectionable for built-in test requirements, but would be
prohibited during a mission. These tests were made more useful by dividing
them into small segments each of which could be run at different times., The
tvpical length of these segments is given in line 3 as 3.6 milliseconds. This
places each segment in the same time range as the error response routine
times. Again, these estimates depend heavily on main processor diagnostics
fer which there are no accurate timing estimates available,

The last item is the 16.4 milliseconds needed for reporting each
failure as it is detected.

Estimated
Time In
Microseconds

1. RRU Processor Tests 23,700
(Main Processors on Line)

2. Tests Involving Main Processor 3,147,000 (3 seconds)
3. Single Segment From %2 Above 3,600
4. Status Reporting (Main Processors 16,400

on Line)

Figure 36. Self Test Timing Estimates
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G. CUSTOM DEVICES
1. Summary

A number of circuits have been designed to facilitate the implemen-
tation of a seif-diagnosing processor using dynamic redundancy. Most of the
circuits are important in terms of the efficient realization of the concept and
are predicated on large-scale integrated (LSI) circuit embodiment of a number
of functions. The microsequencer device is desirable in any processor in
that it reduces parts count and the number of devices in any processor. In
the SDFTP, it is important because the microsequencer partition is replicated
three times in the design and, thus, the parts reduction is increased by a
factor of three.

The other four circuits are integral to the implementation of the
self -diagnosis and fault tolerant concepts. Two self-checking circuits, which
detect errors not only in their inputs but within the circuits themselves, are ¥
defined. They are the Self-Checking Checker (§.C.C.) Without Mask and
With Mask. These LSI circuits are used between the bit-slice processor part -
tions and in the RRU respectively. The 5.C.C. Without Mask 1s the realization
of three totally self-checking checkers (T.5.C.) and three scanning registers.
The 5.C.C. With Mask accepts a karger input vector that can be masked. so that
selected inputs are rendered ineffective in the code check of the device.
However it has only a single TSC and therefore, unlike the S.C.C. Without
Mask, cannot check the triplicated input.

The Voter-switchis an important circuit with respect to the fault
tolerance capabilities of the design hecause it provides the reconfiguration
capability. Tt consists of a triplicated, voter and three -way switch, which
can be used to connect triples of inputs to triptes of outputs. In the voter,
each output is the majority function of the three inputs. The choice of the
interconnection can he externally selected.

The last circuit in the complement of these new LSI circuits, is
the clock controlter. Tt is applied in the RRU and is designed to prevent
inadvertent clocking of information into the Voter-Switch devices and thereby,
possibly changing the interconnection. The check signals are interlocked so
that either the majority of the RRU computers control the clock and ‘or these
computers supply a code word for one of three modes of operation.
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2. Self-Checking Checker Without Mask

The Self-Checking Checker (S.C.C.) Without Mask is a device that
checks the outputs of the SDFTP bit-slice partitions. It is designed to detect
errors at its inputs as well as in the circuit itself. In addition to indicating
the presence of an error at its outputs, it saves a copy of the input that is
currently being checked as well as the previous input. The device is designed
to check three sets of identical 16-bit inputs using self-checking circuits.

The three sets of inputs are grouped into three different pairs of 16-bit inputs.
Each pair of signals is encoded in a dual-rail unordered code, which is checked
by a self-checking tree as shown in Figure 37. The two level tree is composed
of four-out-of eight (4 ‘8) self-checking checkers. The single second level

(4 ‘'8) self-checking checker has a dual-rail output, encoded so that the 0-0 and
1-1 output combinations indicate that an error has been detected. The three
trees are totally self-checking (T SC) in the sense that an assumed error

never causes an erroneous output .
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. S0C
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Figure 37. Totally seli-Checking Checker (TSC)

The outputs of the three TSC trees are saved 1n scanning registers.,
The three dual-rail outputs are clocked into the three scanning registers along
with the three sets of 16 bit inputs as shown in Figure 38. FEach of the register
clock lines are brought out separately so that each of the scanning registers can
be individually clocked as in the case of the SDFTP
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captured by the scanning register is shown in Figure 39.

The three scanning registers save the three sets of 16 bit inputs and
the T.S.C. outputs; also the three sets of 16-bit inputs from the previous clock
cycle are saved.
put sets shifted down to the previous cycle's locations. The format of the snapshot

This snapshot is updated every clock cycle with the current in-

The three T.S.C.

outputs are located at the output ends of the registers. The error information
consisting of the outputs of the TSC, is rotated with respect to each other so

that the three T.S.C. outputs are simultaneously available.

This makes it

possible to detect all errors detected by the T.S.C.'s as is done in the RRU
S.S.C. With Mask.

by supplyving a clock signal to serially shift the data out.

The snapshots of the inputs and their T.S.C. outputs can be read out

Since the shift clocks

of the three scanning registers are separate, the shift out of the snapshots can

be done independently by supplying the appropriate clock signals.

The registers

are designed to circulate the information as it is read out so that, if desired,
the snapshot can be retransmitted by supplying additional shift pulses.

and provides three dual-rail outputs.

The S.C.C. Without Mask can accept up to three sets of 16 inputs

It is planned to be implemented in a

64 -pin package and has a gate complexity of the order of 2200 gates. See
Figure 40,
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INPUT 5 INpPUT 2 INPUTT ] INPTT 3 INPUTT 2 INP UL ) . . . , , ,
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SO WHTHOT T ATASK

Figure 39.

Scanning Register Format
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3. Self-Checking Checker (S.C.C.) With Mask

The Self-Checking Checker (§.C.C.) With Mask performs a function
similar to the S.C. C. Without Mask; that is, it detects errors in its input and 1n
the checker itsetf. Like the S.C.C. Without Mask the design is based on a
Totally Self-Checking Checker (T.S.C.) tree. However, since the function of
the S.C.C. With Mask, in the SDFTP, is to reduce the size of the SDFTP error
vector, consisting of all of the S.C.C. Without Mask outputs, the input domain
consists of pairs of signals where each bit is encoded in a dual rail code.

Thus a single tree is sufficient to reduce this set of S.C.C. Without Mask
outpuis to a single dual-rail output having the same unordered code encoding.
An error is indicated by the 0-0 or 1-1 signals.




This T.S.C. tree is a three-level tree. The first level is composed
of 4 8 T.S.C.'s and this is followed by a pair of 3 6 T.S.C.'s. The last level,
which produces the output, is a(2 4) T.S.C. As in the case of the S.C.C.
Without Mask the output of the T.S.C. tree is saved in a scanning register as
shown in Figure 41.

The T.S.C. is combined with the two dual-sail encoded 24-bit imputs
to form the snapshot. This information is captured in the scanning register by
using the computer clock line to set up the signals in the register flip-flops.

In this device only the current inputs are saved as contrasted with the S.C.C.
Without Mask device, which saves both the current input vectors and the
immediately preceding clock-cvele inputs.

Since the function of this device is to reduce the number of S.C.C.
Without Mask error signals, and it must continue to operate after one or more
errors have been detected, those outputs that are known to be sources of errors
must be maskedout. Hence, a mask register, which can be externally loaded
and will block the input signals that are not to participate in the over-all error
generation (come from devices that have faults), is provided.

The blocked signals are replaced by properly encoded signals. A
one in the mask blocks the input signal while a zero allows the input signal to
he processed by the device circuits.

New masks are set into the mask register by serially shifting in the
mask bits two at a time under the control of the mask clock. The operation of
the mask part of the device can be verified by monitoring the Mask Out out -
put when the shift clock is supplied. As new information is read in, the
previous contents of the shift register are shifted out.

Pin usage is <hown in Figure 42. Gate complexitv is about 800.

4. Voter-Switch

The Voter-Switceh device interconnects the SDFTP partitions. Since
the partitions are triplicated the device must accept triplicated inputs and
produce triplicated outputs. In the Voter-Switch device the triplication is
at the it level. Each of the triple cutputs per bit 1s either the majority func -
tion of the triple inputs for the bit, or it 1s one of the triple iputs for the partic-
ular it that has been selected by one of the Voter-Switeh switches . Selection
of the majority function or switch input is controlled by the Voter-OR-Switch
(VOS) bit of the Voter-Switch Control Register. The selection of which of the
three inputs is used is under the control of the switch control bits C1, C2
and C3, which are also stored in the Control Registers. To assure independence
of each of the three sets of circuits,the Control Register is triplicated and is
used to control only one of the three circuits that generate each bit's triplicated
output. This is shown schematically in Figure 43 where a single bit of the
Voter-Switch circuitry is shown with the three sets of Control Registers, which
are used for all of the nine bits of input. The triplicated outputs for each bit
are produced by three, three-level networks. The network output is developed
by an OR-gate, which receives the outputs of the gated voter and the gated
switch selected inputs. These inputs are gated by the second level of the net -
work, which is controlled by the setting of the VOS bit of the Control Register,
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A "one" value for the VOS selects the switches, while a "zero" selects the
voter that produces the majority function of the inputs. The selection of the
particular input, when the switches have been selected (the VOS is a one) is
determined by the C bits of the Control Register. Setting C1 to a one selects

i I 1 by means of the top, third level AND gate. Similarly, setting C2 and C3
to ones, selects i I 2 and i I 3, respectively. Hence, any input can be routed
to any one of the three outputs for this bit and, therefore, can be accomplished
in the other bit locations using their bit networks, which are identical. Excluding
the Control Registers, the Voter-Switch consists of nine bils of triplicated
networks as shown in Figure 43 for a total of 27 selector slices, which are
identical except for their inputs.




s —
i vooNLwr o 1 LS
I —— - -
U ve puUr Tagoy |
poreordury gy oaniiyg - - o T T
_ Yoo
[ - N _ < _

MO TN

{
! COONVIN IV
{ e
. ERIE RN
o ;oM INOD
|
L ] . . _
o i
L ]

l

A e et
Tl o -
A

o ONVIVINOD

649




Changes in the interconnection between partitions are accomplished
by changing the three Control Register contents. Each Control Register
controls one-third of the networks and each can be changed independently of
the others. In order that these changes in the interconnections do not affect
the information passing through the Voter-Switch, the changes should be
scheduled during periods of time when information is not being exchanced
between partitions.

Loading of the Control Registers is accomplished bv serially shifting
in the four bit commands using the shift-in clock. Since each Comimand Register
has its own separate input and clock line the Command Registers can be in-
dividually loaded.

The Voter-Switch pin requirements are shown in Figure 44, The
device complexity is of the order of 400 gates.

5. RRU Clock Controller

The RRU Clock Controller provides a comprehensive control over
the RRU clock signals. It is designed to prevent inadvertent clock signals
from changing the SDFTP control and diagnostic registers, except during
certain prescribed intervals. The signals involved are the Self-Checking
Checker Shift Clock, the Voter-switeh Command Clock, and the Self -Checkinge
Checker With Misk Mask Clock. Besides regulating these sienals the device
provides additional drive for these signals.

Control is exercised over the clock signals by inhibtting each clock
stemal in a two-input AND-gate as shown in Figure 45, This mhibiting siemal
can be removed in three different ways, corresponding to three different modes
of operation for the clock controller. All three modes are vonditioned by a
code word circuit that must receive the correct mode code word hefore the mode
inhibit can be removed. On receipt of one of these code words and proper
decodcing, the designated mode can be commanded. This circuit 1s shown n the
middle of Figure 45. It reccives the code word a nibble (4 bits) at a rime and
shifts the 32-bit code word into the register under the controt of the code waord
clock,

The first clock mode 1= the normal or unfailed RRU mode . In this
mode, the three RRU 5.C.C. With Mask signals are used to set fhip-tlops an
which the outputs are voted by a majority gate as shown in the top of Frenre 45,
The flip-flops capture the 5.C.C. With Mask error signal. smee 1t will be lost
a8 soon as the S.C.C. snapshot registers are read out. The voter output, whieh
produces the majority function of the three RRU S.CLC. With Mask error simnals,
then chanves the clock mhibit signal to an enable signal. The cascade of the twa
input AND and the OR provides the code word conditionming for tins path tmode?
and the alternative methods of enabling the output clock AND -wate,

The second mude is the single RRU interrupt signal which permits a
single RRU computer to turn the clocks on after supplying the correct clock
word. As in the first mode, the interrupt signal is used to set a flip-tlop, which
actually drives the clock enabling circutt consisting of a two input AND-uvate and
a three input OR (See Figure 45). Again, the AND gate provides the command
word conditioning of this mode signal while the OR gate 1s used to merge the
alternate clock enabling sigmals.
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Figure 44. Voter and Switch Pin Requirements

The third test mode is provided to permit the RRU to be tested. The
voter circuit at the bottom of Figure 45 produces the majority function of the
three RRU computer test signals. The voter output is conditioned by both the
code word decoder output and the main processor test signat so that testing
can be performed only when both the RRU computer and the bit-slice processor,
controlled by the RRU, have called for a clock turn-on. This conditioning is
accomplished by the three-mode clock enable paths.

After each enabling of the clock signals, the circuit must be restored
to its original inhibited condition by the reset signal. In the SDFTP this
signal is generated by an RRU computer.,

The clock controtler device controls eight clock signals as shown n
Figure 46, The proposed circuit is a 40-pin package and has complexity of
about 400 cates,
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Fipure 46. RRU Clouck Controller Pin Assignment
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6. Microsequencer

The proposed microsequencer chip is intended for use in the
SDFTP microsequencer partition, but it can perform the microprogram
sequence control for any similar microprogrammed processor. In the SDFTP
it reduces the parts count and number of devices significantly because of the
triplication of the microsequencer partition. In this partition il replaces
four high-speed counter devices, two quadruple two-to-one multiplexers, and
an eight-to-one multiplexer.

The microsequencer extends the microprogram address field width
and adds a microprogram subroutine stack. The added capability is gained
without slowing the sequencer or adding excessive power dissipation. The
commercially available microsequencers generally offer more sophistication
than required for a computer microprogram sequencer, with the attendant
costs in power, speed, and reliability. They suffer from the need to address
the largest possible market.

The prosposed microsequencer contains a microprogram register
and incrementer, a two-word stack for microprogram subroutining, a tally
counter for microprogram loop control, and a condition multiplexer to select
jump tests from six data dependent conditions. A block diagram of the
sequencer is shown in Figure 47. The function of the circuit is to generate ,
the next microprogram address, given the current state of the machine. L
The possible next address, given that the current address n, is the next
consecutive address n - 1, a jump address input from the control store,
the address at the top of the subroutine stack (return from microsubroutine),
or the fixed address zero used for honoring a program interrupt. The choice
of the next address is controlled by the instruction input to the sequence,
Table III, the external condition inputs, the tally counter, and the address
input. The tally counter i: loaded from the address input; it can be decremented,
and generates a zero tally condition.

The function of the sequencer is as follows. The instruction decode
logic, Table III , gencrates the control signals to operate the remainder of
the sequencer. In addition to the instruction input (I - I9), the logic uses the
output of the condition multiplexer, Figure 48, and the condition select inputs
(Csy - CSZ)‘ The tally counter Figure 49 is simply commanded to load from
the address input, to decrement, or do nothing. It is a 12-bit 1's complement
counter that uses the carry out as a zero detect. The counter is synchronous
with carry look-ahead logic over a group of four bits. The heart of the sequencer
is the multiplexer, microprogram register, and incrementer logic shown in
Figure 50. The multiplexer chooses, on command, from the instruction
decode logic, the input to the microprogram register from either the incrementer,
the stack, the address in, or the constant zero. At each clock the microprogram
register is loaded with the output of the multiplexer, which becomes the
address output to the control store. The incrementer adds "1" to the micro-
program register and makes the result available to the multiplexer and the
stack.

The stack, Figure 51, is a two-word last in-first out stack. It is
used to store the return address, ns+1, when a microprogram subroutine is

called. The two-word stuck was selected because the control is particularly
simple and the logic implementation is fast. Also, two-level subroutine
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TABLE III. SEQUENCE TABLE

H OPCaDE OPERNTION
%
0 BRANCH T CONDIPION TRUL
1 CALL D CONDHIION TRUE
: ) RETURN [ CONDEHON TRUE

| - LOATY [ALLY

i | BRANCH TF CONDITION FALSE
5 CALL TE CONDTTION FALSE

: N RE LU RN T CONDITTON FALSE
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i
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Figure 48. Microsequencer Control
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nesting is adequate for efficient microprogramming of almost all types of com-
puter instruction sets. In fact, there is seldom a need for more than one level
of subroutine. Larger stacks are often advocated when, the application program
is part of the microprogram, which is not of interest here.

The above logic diagrams specify the function of the microsequencer
chip. The approximate gate counts associated with each function are as follows:

Mux. Microprogram Register, and Incrementer - 179
Tally Counter - 144 :
Stack - 180 i
Instruction Decode, Condition Mux. - 35

These total 528 gates, which is a modest -sized chip, especially
when it is considered that many of the gates are part of multiplexers that
can be realized by a few transistors in some technologies, and when it is
noted that most structures used are quite regular,




IV. SELF TEST

Self-test is used for a number of different reasons in this design. In the
bit-slice processor, it is utilized in the on-line mode to determine whether one
of two identical circuit implementations is faulted and, if so, which one. Itis
also used to periodically exercise the error detecting and reconfiguration cir-
cuits to verify that they are still unfailed. In the RRU, the Maskable S.C.C.
trees are similarly exercised to, initially, detect errors; but if an error is
detected it is used for locating the source of the error. The RRU computers
are also self-tested to verify an unfailed status.

In the case of error detection, the self-test verifies that the coverage is
in place and operable. In the error location mode, the self-test programs are
not only executed to detect faults but, on completion of the tests, the precom-
puted final 1esult can be compared with a pair of results generated by the SDFTP
circuits to determine which circuit is in error. It is this latter usage that is
important for diagnosing second errors in the bit-slice processor microsequencer
and processor array partition, and in the RRU computers. (The control store
second partition errors are resolved by table lookup in the RRU as discussed 1n

Section III-F.) v_.

To obtain a more confident estimate of the size of these programs und
their effectiveness, particularly for circuit modules containing LSI devices, a
2901 bit-slice microprocessor device was simulated using the Digitest Version-
4 Logic Automated Stimulus and Response (D4LASAR) facility and program
system.

The D4LASAR program automatically generates high~quality diagnostic
tests for complex sequential and combinatorial networks. When applied to an
available gate level description of the 2901, the program determined that 3600
test vectors were required to obtain 99 fault coverage.

Thus, it is likely that a considerable number of vectors will be required
to test circuits containing embedded LSI devices, such as the 2901, for this level
of coverage, However, lower levels of fault coverage appear acceptlable, based
on the reliability predictions determined in Section VI. Thus acceptable self-
test should be of manageable size if advantage is taken of additional factors.
One of these is to use the information captured at the time of the error to localize
the error and run those self-test segments that exercise those parts of the circuit
contributing to these errors,

The self-diagnosing processor demonstration described in the Program
Pian (Section VID, offers an opportunity to better quantify the size and coverage
of these self-test programs,
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V. RELIABILITY ENHANCEMENT AND PREDICTION
A. INTRODUCTION

The reliability enhancement of the SDFTP, with respect to the sim-
plex processor, is achieved via static and dynamic redundancy. The bit-slice
processor is partitioned to reduce the size of the circuit modules that are
switched. This was accomplished without incurring undue interface switching
costs. Hence, partition size is a compromise between the reliability improve -
ment due to smaller partitions, which approach "component” reliability, and
the loss of reliability due to additional interface devices, which are needed to
interconnect the partitions and provide error detection and location information.
The resulting three partitions have, roughly, equal failure rates as shown in
Table IV with only four interfaces that must be monitored and controlled, as
shown in Figure 3.

TABLE 1V

PROCESSOR PARTITION FAILURE RATES

MICROSEQUENCER 5.66
CONTROL STORE (!
PROCESSOR ARRAY 7.73

Self-diagnosis 1s achieved through the use of self-checking checkers
that extend the error protection boundary to include not only the partitions but
the checkers themselves. These checkers are colocated at each immtertace with
the devices that provide the interconnection between the partitions. These
checkers monitor the partition outputs and alert the Reconfiguration and Recovery
Unit of the occurrence of an error as soon as one occurs. These signals linit
error propagation to the partition in which the error occurs by inhibiting the
clock. Thus the bit-slice processor error state is maintained until the RRU
computer can use the checker snapshots to locate the partition interface that is
reporting an error.

After the error detection and location functions have been accomplished,
the RRU reconfigures the bit-slice processor using the checker error informa-
tion and the SDFTP status that 1t maintains. The RRU achieves the reconfiguration
by emitting reconfiguration commands to the Voter-Switches located at each inter-
face. These commands are intended to selec: either the voter or the switch con-
nection between adjacent partitions.

At the start of cach mission, the processcr is configured with the
voters providing the connection between the partition. After two errors are de-
tected at an interface, the RRU commands the Voter-switch to change over to the
switch connection. Once reconfiguration has been completed, the RRU mmitiuates
the recovery process in the SDETP in one of two wavs: either the RRU vectors
the bit-slice processor back to the last roll-back point or it vectors the processor
to the self-test routine, which falls through to the rollback pomtan the appheation
program if no errors are deteeted durivg the self-test exercise.
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The calculation of the reliability of the SDFTP depends on the model of
the desipgn developed and the failure rates ot the devices emploved in the design.
The niodel of the SDFTP design 1s described in the next unit, The discussion ot
the reliability estimate 1s concluded with a discussion of the use of the MIL-217T1B
Handbook method used to calculate the failure rates.

B. SDFTP RELIABILITY MODEL

The SDFETP rehability model consists of the serial reliability of the
bit-shice partitions and the RRU. Each partitton’s reliability module is modeled
as the cascade of the following devices,

1Y an mput 5.C.C,
21 bit-slice processor partition
3)  an output 5.C.C.
4) Voter-Switch.
Since the bit-slice partitions are triplicated, the partition reliability expression

is of the following form:

Partition Reliwability = R3 + SRZ (1-R) + 3R (l—R)2 (1)

where R is the reliability of a single partition,

The reliability of the input and output S.C.C. and the Voter-Switch
voter., switch, combiner and command register are of a similar form . All but
the voter and switeh are considered to be in series in the reliability model.
Because of the switching froiy the voter connection to the switch after the second
error detection, the voter reliability modifies only the first two terms of the
partition reliability expression, Eq. 1, while the switech modifies the last term
of the expression. Hencee, the reliability equation for the partittun module 1s:

! : : 2
Moduls R 2. 3r2ar) (RS 3k 20w 3k w0
Rehability P p p v v v v \
- 3R _(1-R )2)(1{ 3 3R‘2<1-R_) - 3R tl-n_w2>

p P = 5 S S s

2 |

]RIC JRIE. rl-HK,* -3 RIC( I_RIC) ] :

‘R(fc . :5}{&,114(0(,\ 3 ROCH—ROC)Z]\-

lug -3 ng (1-R -2 R(JI—RC)zi : (2
{R(Tf( -3 “ci' RO 3 Rep RG] |
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where the reliability for the devices is

R - partition
p P
RV - voter of the Voter-Switch device
Rq - switch of the Voter-Switch device
RIC -mput 5.C.C.
ROC - output 5.C.C.
RC - combiner of the Voter-Switch
RCR - command register of the Voter-Switch.

The microsequencer and control store-pipeline register follow this
form exactly. However, the processor array requires that Eq. 2 be moditfied
to account for the fact that it has three interfaces -- one input and two output
The modification consists of multiplying Eq. 2 by the appropriate third interfuce
devices . Since the processor array-microsequencer mterface is identical to
that modeled in Eq. 2, the processor-array-memory interface will be considered
as the added interface. Thus, the first and second terms of Eq. 1 are now modi- p
fied by two voter expressions. One is the processor arrayv-microsequencer
mterface Voter-switeh devicee and the other is the processor arrav-memory
mterface device ., The third term of Eq. 1 is modified by the two switch reliabil-
thies of the two processor array output interfaces. Thus this part of the expres-
s1on beconies,

P.A. Partitinn 3 9 3 9

with voter (R T LU3R TR )> (R Y+ 3R (1-R i) (3)
o 3] P L v vim vm

and switch ‘

(u Y 3r2 (1R >)
Vo VO VO
: 4 2
3R (1-R YZ((R S U3R2 (IR ). 3R (I-R »)
P P sm s s sm S

<i(3 + 3R 2 (.-R_ 1+ 3R (1-R '2> .
50 50 S0 50 S0

where R“ - processor arrav partition reliability
R\'m - processor array-microsequencer Voter-Switeh voter
R“‘ - processor arrayv-memory Voter-switch voter
R:.m - processor-arrayv-microscquencer Voter-swicch switeh
RS” - processor array-memory Voter Switch switeh

Eguation 3 1s multiphied by the reliability of the mput $.C.C ., the
processor-array microsequencer terface S,C.C L, and the processor-array -
memory mmterface 5.C .C 00 the Voter-switeh combiner and the command register

84

— e




" reliabilities. Each of these circuits is triplicated and therefore modifies Eq. 2
by a factor of the form of Eq. 1. Eq. 4 is the processor array reliamhty
expression:

} * ¢ / ‘ ¢
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where
R.,R R |R . and R are defined as before and
pTovm’ vo’ s SO
R... - input 5.C.C. reliability
IC :
output 5.C.C . processor arrav-microscguencer mterfaee

R .-
OCM
R - output 5.C.C. processor arrav memoryv interface
oCcoO :
RCM - processor array-microsequencer Voter-switch combmer
RCO - processor arrav-memory Voter-Switeh combiner
R - Processor-arrav - microsequencer Voter switeh command
CMM ! !
revister
R('MO - processor arrav-memory Voter switeh comiand vegister
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Tt processor array and the microsequencer partitions must be
modified t.» ~~c.ut for the use of self-test to diagnosis which of two partitions
has faile «: : tvo have been detected that affect the same partition. Since the
coverage of wuw .2 self-test programs is not complete, the term that represents
the condition of two partitions failed and one unfailed is modified by a factor that
accounts for this incomplete detection capability. This coverage factor is the
conditional probability that, given that an error has occurred, the error is
detected. For the microsequencer this term of Eq. 2 becomes,

2 3 2 2)
3Rp(1-Rp) (Rs +3RS (I-RS)+3RS(1—RS) CFS s (3
where the terms are as defined for Eq. 2 and

CFS is the microsequencer self-test coverage probability.

For the processor array module, the corresponding term from Eq. 4 is,

3R (1-R )% (R 3,3R 2(1-R_)+3R__(1-R )2)
P p sm sm sm sm sm
3 2 2)
x (Rso +3R2 (1-R_) + 3R, (1-R_*) CFp, (6)

where the terms are defined as in Eq. 4 and CFPA is the processor-array self-
test coverage probability.

The reliability of the three partitions of the SDFTP is then the product
of each of the partition modules reliability as given in Eq. T,

Bit Slice
Processor = R_XR xR , N
Reliability cs PA

where Rm - microsequencer partition module reliability
Rcs - contro} store partition module reliability
RPA - processor array partition module reliability

The overall reliability of the SDFTP is the serial reliability of the bit-
slice processor partitions and the RRU, which includes the Maskable S.C.C.,
and the RRU computer, together with the clock controller. Since there are three
strings in the RRU, the reliability expression for the RRU is: '

+3 (Rp" Rppe - Rcc)2 (1-Rp Rppe Bee)

3
Rere * Ree)

RRU Reliability = (RT .

2
+ 3RpRppoRoc (1-RpRppe " Rec) (8)
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where RT is the reliability of the Maskable S.C.C. tree

RRR is the reliability of the RRU computer including its
memory/I/0 buffers

RCC is the reliability of the clock controller.
The SDFTP reliability is then,

Reliability

SDFTP = Rm X RCS X RPA X RRRU ’ (9)

where R is the reliability of the RRU.

RRU

Once the reliability model has been established, the reliability of the
design can be calculated using the device failure rates.

C. FAILURE RATE CALCULATIONS

The reliability assessment performed on this program follows that
given in Military Standardization Handbook MIL-HDBK-217B, Reliability Pre-
diction of Electronic Equipment. Device failure rates were determined using
the expressions given there for monolithic solid state integrated circuit devices
as,

A = T
p nLnQ(ClnT+C27E) , (10)
where A - the device failure rate in failures/106 hours
LT is the device learning factor

For this projection, 7y was assumed to be 1
for all devices (in production)

T is the quality factor

Mo Wwas assumed to be 2 corresponding to quality
level B, MIL-M-38510, Class B (JAN)

T - is the temperature acceleration factor

An average junction temperature of 75°C resulting

in nT of 1.6,

T - is the application environment factor

This was selected as 6.0 corresponding to an
airborne, uninhabited environment.

87




The complexity factors for the SSI, MSI logic and ROM memory were
determined using the gate counts and tables given in the Handbook. For the
LSI devices, where gate estimates were not available, manufacturer informa-
tion was used where available and, where not available, a gate count was
estimated based on the logic equivalents. Complexity factor projections for
C1 and C9 were developed using the Handbook per gate values for the optimum
level of integration. This had the effect of making the per gate complexity
factors less sensitive to gate count for the device complexities of interest to
this program, and reduced the effect of the gate count uncertainty of the highly-
integrated LSI devices, such as the 8048 computer.

D. RELIABILITY ESTIMATES

Using the device failure rates calculated as described above, the
reliability of the simplex processor consisting of a microsequencer, control
store and processor array,was calculated. The corresponding probability
of failure for one to 10 hour missions were calculated and are shown in
Figure 52. The SDFTP probability of failure for various coverage factors
is plotted in Figure 53.
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VI. COMPARISON OF SDFTP AND SIMPLEX PROCESSORS

The Self-Diagnosing Fault-Tolerant Processor (SDFTP) provides "failed
op®" fault tolerance. In comparison with the simplex design, which cannot
tolerate a fault, it is significantly superior -- especially for fault tolerant
applications such as flight control. Fo:r short missions, less than 10 hours,
it has significantly enhanced reliability compared with the simplex design.

Its failure rate for a two hours mission is nearly four orders of magnitude
less than the simplex design, as described in Section V.

Testability and maintainability of the SDFTP is significantly improved
over the simplex design since it maintains an error history and up-to-date
status of the SDFTP during the entire flight, which can be utilized to decrease
repair times. The incorporation of self -test programs, ccupied with self-
checking checkers and partition interface scanning registers, significantly in-
creases the diagnosis capability since the error reporting is to a much finer
scale than it is in the simplex design,

In the performance and ease of application the two designs are com-
parable. The rate of instruction execution of the SDFTP should approach that
of the simplex design, provided that the processor control circuitry does not
ertail large delays. Since the instruction repertoires of the two designs are
nearly the same, the ease of programming should be nearly the same. Itis
intended that the SDFTP have some additional instructions to ease the recon-
figuration and recovery process.

Since the improved fault tolerance and reliability of the SDFTP is achieved
via redundancy, the SDFTP requires much larger resources than the simplex
processor. As listed in Table V, the simplex processor only requires 45
devices, (writhout the microsequencer device) while the SDFTP requires about
4.4 times as many devices. Most of the additional parts are required to imple-
ment the triplication employed with the bit-slice processors and the RRU error
processing channels. The remainder are needed toc implement the checkers,
partition interconnection devices and the dynamic redundancy control. In terms
of the number of different devices (parts count) the simplex processor requires
just 12 different devices, all of which are commercially available. In contrast,
the SDFTP is implemented with 19 different devices, of which four are special
designs, as shown in Table VI. Both the simplex and the SDFTP would benefit
from the special microsequencer device design, since it would reduce the sim-
plex parts count by six and the SDFTP count by 18. The microsequencer device
would also eliminate three different parts thereby reducing the parts types by
two. The SDFTP is much more extensively integrated than the simplex, with
nearly half of the devices of the LSI level of integration.




TABLE Vv

COMPONENT COMPARISON
OF
SIMPLEX VERSUS SDFTP

FUNCTION SIMPLEX SDFTP
BIT-SLICE
MICROPROCESSOR
LSI DEVICES 16 3(16)
MSI DEVICES 26 3(26)
SSI DEVICES 3 3(3)
TOTAL 45 135
CHECKERS
'
s.C.C. 21
(LSD
RECONFIGURATION
VOTER-SWITCH 10
(LSD
RRU
MONOLITHIC 27
MICROCOMPUTER .
(LSD
CLOCK 3
CONTROLLER
MISC. 12
OVER-ALL |
TOTAL 208 |
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TABLLE VI
PARTS COUNT COMPARISON

SIMPLEX VERSUS SDFTP

SIMPLEX SDFTP
LS00 LS00
LS04 LS04
LS86 L586
LS138 LS138
LS151 18151
LS158 LS158
LS163 LS163
LS174 LS174
LS253 LS253
2902 2902
2901 2901
5341 5341

S.C.S. WITHOUT MASK
S.C.C. WITH MASK
VOTER-SWITCH
CLOCK-CONTROLLER

8084

8243

8355

Storage requirements for the two designs are difficult to compare. The

simplex processor has nothing equivalent to the RRU computer-storage devices.

In the bit-slice processor area, the requirements are hard to quantify for the
reasons cited in Section [V. However, it is believed that, because the SDFTP
is partitioned into smaller circuit modules than the simplex processor, the
SDFTP can use smaller diagnostic programs than the simplex processcr, with
higher coverage.

Another advantage of the SDFTP is the absence of a hard-core problem
since two replicas should be operable under the single fault-at-a-time assump-
tion .
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Vil. PROGRAM PLAN

It is recommended that a prototype self-diagnosing fault tolerant proces-
sor be built to demonstrate the concepts and techniques involved, and to indicate
the resources required for their implementation. This demonstration will indi-
cate whether the self-diagnosing processor has the ability to operate correctly
through the introduction of faults in the processor, and whether it can execute
the prescribed tasks in a timely fashion. These experiments will be designed
to demonstrate the following qualities:

degree of tolerance
comprehensiveness of protection

responsiveness of error processing

types of fault coverage

compatibility with LSI implementation

The ability to protect the processor from both single and multiple errors, single
and double fault occurrences of the same fault without intervening repair, and
consistent and inconsistent types of errors will be demonstrated. The ease and
variety of fault insertion are important attributes because they allow the effective-
ness of the error detection, error location, reconfiguration, and recovery capa-
bilities of the processor to be readily exhibited. Thus the ability to display the
state and readiness of the demonstrator, as well as the fault history, are im-
portant considerations in developing an effective demonstrator presentation.

A. DEMONSTRATOR DEVELOPMENT PLAN

The recommended approach consists of a two-phase development program.
The objective of this program is to construct a demonstrator together with its
associated demonstration programs, which will show the operation of the self-
diagnosing processor under various conditions of fault. The first phase will be
concerned with definition and design specifications, and the experiments that can
be run on the demonstrator. The resulting definition will then be used to esta-
blish the requirements and specifications of the demonstrator. The self-diagnosing
processor will be built during the second phase, according to the specifications
arrived at in Phase I; the result will be a self-diagnosing processor and its asso-
ciated computer programs to demonstrate the capzbilities of the processor.

1. Definition, Design and Specification Phase

The following tasks shall be accomplished during this phase:

Define Demonstration System

A plan for demonstrating the capabilities of the Self -Diagnosing Fault
Tolerant Processor (SDFTP), including the experiments that are to be performed
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to illustrate the features and range and extent of the fault tolerance desired by
the Air Force, will be developed. A functional description of the Self-Diagnosing
Fault Tolerant Demonstration System will be provided.

Design

Using the Air Force approved SDFTD plan the functional specifications
of the demonstrator, including processor design demonstration requirements and
principal interfaces, will be established. This task will have two distinct parts,
preliminary design and detailed design.

In the preliminary design work the Self-Diagnosing Design Techniques
Demonstrator (SDFTD}, including the self-diagnosing fault tolerant processor
(SDFTP). will be designed to a level that clearly shows the technical adequacy
of the selected approach and establishes the ability of the SDFTD to demonstrate
the fault tolerance of the processor.

This preliminary design effort will result in a SDFTP hardware devel-
opment specification that covers (1) all essential system functional character-
1stics, (2) necessary interface characteristics, (3) specific designation of the
functional characteristics to key configuration items, and (4) tests that will
verify that the specified performance has been achieved. A Computer Program
Development (built to) Specification will also be written that describes in opera-
tional, functional, and mathematical language, all of the requirements necessary
to design the required computer programs in terms of performance criteria.

In the detailed design portion the SDFTD will be designed to a level
that clearly shows that all design requirements are satisfied. that the design is
essentially complete, and that the fabrication drawings are ready for release.
This work will culminate with a presentation of the detailed design to the Air
Force for approval. The SDFTD detalled hardware requirements will also be
developed during this part of the effort. These requirements shall be specified
in a hardware functional description that establishes the performance. design
and fabrication requirements. Design drawings will be provided to good com-
mercial practice. The SDFTP computer programs will be described in a
Computer Program Product Specification that provides a summary of the pur-
pose and scope of the specification and a review of the major functions. The
requirements section will provide for a functional allocation description, func-
tional description, storage allocation, functional flow diagram, program in-
terrupts, and control logic description.

Program Plan

The Phase [ report will include a plan for the implementation and
demonstration of the self -diagnosing processor designed during Phase 1. This
plan will include a description and schedule of the major events in hardware
and sofiware construction, test and demonstration. Estimates of material cost,
labor by type, and schedule will be included.
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2. Fabrication, Test and Demonstration Check-Out Phase

Working from the detailed design information developed in Phase I.
the demonstrator will be built and the associated computer programs will be
written. The custom LSI devices that were designed during this development
will be implemented in small-scale integrated, SSI, and medium-scale inte-
grated, MSI, circuit form. These devices, as well as those needed to imple-
men: the remainder of the design, will be selected from commercially available
products. Layout and fabrication of the custom LSI devices is planned following
successful operation of the demonstrator.

Checkout of the hardware and the software are scheduled to proceed
concurrently, using available development systems. Integration of the hardware
and the software will be accomplished as the individual subsystems, programs
and routines are tested and checked out. The completely integrated demonstrator
will be tested to verify that the demonstrator performs as specified and the fault
insertion experiments can be successfully performed.

The proposed schedule for the development of the demonstrator is
shown in Figure 54. Significant milestones are also indicated. The definitive
plan and schedule for this second program phase will be refined at the end of
the Definition, Design and Specification phase as indicated in the Program Plan,
above.
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A INTRODUCTION AND SUMMARY

Two airborne application areas were selected for the baseline require -
ments. These are airborn flight control and the synthetic aperture ground
may function of airborne multimode radar signal processing. Each application
is examined to determine its processor requirements, beginning with mission
identification and functional analysis leading to the development of the
algorithm flow. Performance analysis of representative tasks is described
and the resource estimates are developed in terms of memory, processor
speed, and complexity, as measured in terms of the variety of operations and
their corresponding execution rates.

The Flight Control Application is considered first in Section B since
it represents a set of requirements that falls within the realization capa-
bilities of existing LSI devices, such as microprocessors and memories, con-
figured in a single programmable computer structure. It is estimated that a
high performance control-configured, fly-by-wire aircraft would require less
than 16,000 words of 16-bit wide memory and could be controlled by a
processor capable of executing instructions at a 300 to 400 thousands of
operations per second (KOPS) rate. Because of the safety requirements of
this application, quadruple redundancy coupled with software implemented
redundancy management leads to a sophisticated input ‘output system that
connects the electronic flight control system to the aircraft control sensors
and actuators. The reconfiguration approach is designed to achieve "failed
op-squared" fault tolerance for the electronics.

The second application, Synthetic Aperture Ground Map Processing of a
Multimode Radar, described in Section C results in signal processor require-
ments that are beyond the capability of current and near future single con-
ventional microprocessor designs. However, special programmable pipeline
processors and netted sets of microprocessors are believed to be capable of
achieving the performance required. As in many of the other radar signal
processing applications, the core signal processing function has the ability
te generate a doppler frequency analysis of the radar return. For this ground
mapping mode of the multimode radar, a processing rate in excess of
20 % 10% complex multiplies is required in addition to a signal processing
operation rate in the 1-2 million instructions per second range. Compared
to the flight control application, the multimode memory requirements are
significantly larger and are estimated to fall in the 3.5 million bit range.
This storage is normally distributed throughout the signal processor and must
provide a high memory accessing rate capability, which is a function of the
specific radar mode and signal processor architecture.
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B. AIRCRAFT FLIGHT CONTROL

This electronic flight control system combines contemporary ideas for
reconfiguration (transient fault recovery, computer self-monitoring) with
conventional hardware redundancytechiques in a basic quadruplex redundant
structure. With appropriate operating software, the system provides the
reliability and fault tolerance, which are typically characterized as "failed
op-squared” performance. In addition, the system automatically recovers
from certain transient faults, such as interruption of electrical power, and
reorders itself to obtain the highest available level of redundant operation.
A high performance control -configured vehicle (CCV), fly-by-wire (FBW) air -
craft and control surfaces are shown in Figure I-1. Table [-1 is a summary
of the major aircraft functions with respect to aircraft safety criticality In
the following, we will be primarily interested in the flight crucial functions
since they are performed in the flight control systeu:.

AILERON /

TRAILING EDGE FLAP ’\V LEADING EDGE FLAPS
THROTTLE CONTROL ’
RUDDER , ’

STABILATOR

SPEED
BRAKE

/o/—
RUDDER > PARALLEL TRIM

STABILATOR ‘ LEADING EDGE FLAPS
= ﬂ

NOSEWHEEL STEERING

THROYTLE CONTROL V///d

TRAILING EDGE FLAP

AILERON

Figure I-1, Flight Control Electronic System Control Surfaces

Transformation of the operational criteria into design requirements
for a fault tolerant (redundant) digital computer system is arranged to
obviate single point system failures. The design must also meet the follow -
ing fundamental design requirements:

Each computer unit shall independently assess its, and the
system's,operational status.

No computer or combination of computers shall interrupt
another computer’s normal operation.
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The system's redundant operation must start up, and recover
from transient fault conditions without flight crew intervention.

The system design must be able to achieve functional
operation down to a simplex string of operable elements
and be architecturally expandable to at least quadruplex
redundancy.

TABLE I - 1. FUNCTION SUMMARY FOR APPLICATION MODELS

_——

Flight Crucial Functions . Flutter Suppression

Structural Mode Suppression

Fly -by-Wire Control

Full-time Stability Augmentation

Flight Critical Functions . Category IIT MLS Autoland |

Noncritical Functions . Track Angle Select Hold
Flight Path Angle Select Hold
2D 3D 4D Command Generation

Air-Ground Data Link for ATC
Communication

(Above functions provided by
Nary ‘Guidance Computers)

Proceeding from these requirements, a software impleme .ted redundant
management approach leads to the inclusion of a reconfiguration process con-
sisting of failure isolation, transient fault recovery, and redundancy de -
gradation. The redundant channel processes are consolidated at two system
nodes: at the sensor signal input to the control law computations and at the
servo actuator output. The sensor signal selection process is mechanized in
software and the output voting node is a hydromechanical mechanization. How-
ever, the majority of the reconfiguration mechanisms are software processes
designed to achieve system flexibility and adaptability. The hardware archi-
tecture, by virtue of its communication interconnections, is what makes it
practically possible to achieve the benefits of reconfiguration.

The computer unit is replicated on a per channel basis to build a re-
dundant (in this case, quadruplex) fault tolerant system. A processor and
all channel interface electronics are included in the computer unit. Sensor,
mode control and servo hardware interfaces are dedicated on a channel basis.
All cross-channel communication is accomplished via dedicated one -way
serial digital data buses that independently interconnect each computer to each
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other, providing complete electrical isolation between channels. Each computer
exclusively controls the engagement and shutdown of its own servos. A block
diagram of an integrated navigation /guidance /flight control system is shown in
Figure [-2. The assignment of channels and input /output electronics to the
computer units is shown in Figure I-3. A more detailed view of a single
computer's sensor and actuator relationship is shown in Figure I-4.

The control surface functions are pictured in Figures A-1 through A-9
in Addendum A. They are:
Stabilator Functions |
. Trailing Edge Flap (TEF) Functions
. Leading Edge Flap Functions
. Rudder Functions (Channels 1 and 2)

NON- FLIGHT CRITICAL
FLIGHT CRITICAL

COMMAND AUGMENTATION
AV ‘
G DANCE NAV=-GUIDANCE AUTOLAND ¥
DISPLAY GENERATION | CONTRGL MODE SYSTEM INTEGRITY ASSURANGE
AUTO CRUISE AND DISPLAY AND PARAMETER
AUTO THRUST UNIT SELECT PANFL SERVO COMMAN!)
\ ' \ SERVS ENJAGE
1] —
' [ * * T
NON-FL1GHT > 2 s Ly
CRITICAL o NAVIGATION-LOIDANE -
< N — TOVAP TR
SENSORS o COmPaTER FAULT TULERANT
/// ;]"’ AR T CIMEUTERS
/ FLIonT
BRIt - CRITICA,
VOE SENSORS
(i
L 3 1 1saps —*~—~——:k i
AU I o
THOUST CRIMAR S DT L LAY, SATO AL TN T
SERV AN CONTROL ¢ i=Ci YR G !
AN TN e ) PO TT LN SENS S

Figure [-2. Integrated Navigation/Guidance/Flight Control System
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Rudder Functions (Channels 3 and 4)
Aileron Functions (Channels 1 and 2)
Aileron Functions (Channels 3 and 4)
Nose Wheel Steering Functions

Approach Power Control Functions

The interfaces between the computer software programs and hardware and
the rest of the flight control system are shown in Figure I-5.

The set of representative control laws for a CCV 'FBW application are
shown in Figures I-6 through I-17. An overview of the individual pitch, roll,
yaw, flutter, and maneuver for autoland, go-around, and CCV /FBW is shown in
Figure I-6. The individual control law diagrams are referenced in Figure I-6
and presented in Figures I-7 through I-15. Sensor and mode control interface
requirements and servo and display interface requirements are shown in
Figures I-16 and 17.

Processor resource estimates for a high-performance FBW aircraft flight
control system designed to meet the foregoing requirements are tabulated in
Table I-2. The total storage requirements are approximately 13,000 16 -bit
words of program storage and 1,300 16-bit words of data memory. The performance ¥
needed is about 320, 000 operations per second. These estimates are obtained
through sizing the application on a 16-bit flight control computer having the
instruction repertoire and execution times shown in Addendum B.

C. MULTIMODE RADAR SYNTHETIC APERTURE GROUND MAPPING

A multimode radar may have a number of modes of which the following
four are typical:
1) Medium PRF Air-to-Air Search

2) High Resolution Spotlight Mode Synthetic Aperture Radar
(SAR) Mapping

3) Non-cooperative Target Recognition (NCTR)
4) Terrain Following Terrain Avoidance (TFTA)

The associated radar signal processor should be capable cf not only
processing each of the mode returns in real time but should be capable of
switching between any pair of modes in real time without hardware changes.
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TABLE I-2. MEMORY AND TIMING ESTIMATES

Program Memory Duta Memory Execution Rates

Function (Words) (Words) (KOPS)
1. Executive 1400 190 24.00
2. Input Signal

Management 1500 300 103.60
3. Control Laws 4500 500 176.00
4, Quter Loop

Control Laws 700 100 8.00
5. Actuator Signal 1000 50 4.00
6. Built-in Test 3000 100 *
7. Data Management 800 50 4.00

Total 12900 1290 320.40
* Not applicabie - either background or offline.

In all air-to-air and air-to-ground modes except TFTA, the underlying
processing principle is a doppler frequency analysis of a coherent radar
spectrum. Consequently, a fully coherent radar has many of the features
needed in a multimorde radar. However, the exact processing functions and
sequence of operations differ substantially in the various modes. In the air-
to-air modes, ihe processor is primarily concerned with the rejection of the
ground return spectrum to allow detection of a comparatively weak return
from an airborne target. In the high-resolution air-to-ground modes, the
processing task requires a high-resolution development of the ground return
spectrum into its doppler components from which a map can be generated.

The radar synthetic aperture (SAR) mode has been selected for signal
processor sizing. Its block diagram is shown in Figure I-18. The beginning
of the algorithmic flow is the sampled and quantized video developed by a high-
speed analog-to-digital converter. The converted data are presented in bursts
and temporarily stored in a buffer memory as shown in Figure I-18. After the
burst has been captured in the buffer, the data rate is downshifted and all of
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Figure 1-18. Synthetic Aperture Radar Signal Processing

| the remainder of the processing for this burst is accomplished in the remaining

| pulse repetition rate interval. This additional processing includes presunimiing
and motion compensation using data supplied by the radar data processor. This
is followed by two-dimensional transformation of the data and, finally, by post-
processing. Because of the variety of missions and tasks that can be anticipated,
and because the signal processor is part of a multimode radar processing string,
the signal processor must be programmable,

The following implementation assessment is based on the low cost, real
time processor for SAR* systems having a 5 KHz PRF and producing a
512 < 512 point map. The more detailed consideration of the operation of
individual blocks of the signal processor begins with the input buffer.

Buffer

The function of the buffer memory is to downshift the high-speed input
data to the lower speed of the rest of the radar signal processor. The serial
delay line buffer receives 80 MHz complex samples of two separate antenna
polarizations. Each of these samples is quantized to one bit in both the
I and Q channels. A total of 2048 pairs of complex samples is serially stored
in four separate delay lines, one for each pulse burst. Subsequently, this
stored information is serially shifted out to the presummer at a 12 MHz rate.

Presummer

The function of this unit is to select the range samples nearest to the
desired r.nge ceils and weight them in proportion to their closeness to the
corresponding azimuth cell before summing them. The presummer process-
ing sequence, shown in Figure I-19, initially stores the incoming data in a
set of latches. The next step is to multiply the data by a stored reference
value and add a previous value based on attitude information supplied by the
radar data processor. Data thinning and compression are achieved by
ignoring undesired sample data inputs and by reducing the output to 4-bit
complex words consisting of two bits of I and two bits of Q channel data. As
a consequence, the output data rate has been reduced to 1 MHz and, the data
handling shifts from serial word processiuyg to block processing of data arrays.
Thus, storage can be centralized to a bulk working store rather than being
distributed in a number of memories located in the individual processing
functions.

* AFAL Phase I Report on Contract F336 15-C-1167
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Vector Processor

Compensation for aircraft motion is achieved through multiplication of
all of the points by a two-dimensional array. This array is obtained from the
radar data processor, which uses aircraft attitude system information to
generate the array values. Between one million to a million and half complex
multiplies are required to make these corrections.

Iwo-DimensiorﬂFFT

The two-dimensional transformation of the radar map is done in two steps.
First, the ground map is transformed in the range direction by transforming
512 points from each of the 512 azimuth lines. After the range transformation
has been completed, 512 512-point transforms in the azimuth direction are 6
executed. These transformations include a computational load of about 6 - 10
butterflies per second on 16-bit complex data, having 8 bits of [ and 8 bits of
Q. Intermediate storage requirements led to the addition of a 512-word memory
capable of storing complex data in addition to the use of the bulk working store.

Post Processor

The last major functional unit in the algorithmwic flow determines the
magnitude of the complex data transform outputs and integrates the resulting
array. The 512 x 512 point maps require about a million and a haif operations
per second on data ranging up to 16 bits.

The total SAR ground map signal processing requirements are summarized
in Table [-3., These results indicate that a high throughput processor, which
achieve execution rates in excess of 20 MIPS, is required. Althougha
large bulk memory can be emploved, there is a‘'so a requirement for a number
of smaller distributed RAM memories. Most ol the storage is operated in the
random access mode. The input buffer is likelv to be implemented most
economically in delav-line form. These estimates are based on a processor
capable of performing the macro instructions listed in Addendum C.
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TABLE I-3. SAR PROCESSING RATE AND STORAGE REQUIREMENTS

Storage
Function Name Processing Rate (Bits)
PRF Buffer and 6
Presummer 6 X 10”7 complex multiplies 32.0K
Vector Processor 6
(Motion Compensation) 1.5 x 107 complex multiplies 4.0K
FFT (2) 12 % 10° butterflies sec 8.0K
Bulk Memory 2 < 106 transfers sec 2.5M
Post Processor 1.5~ 10() operations sec 64K
a0 I
Total 20 ~ 107 complex muitiplies
+
2 l()6 memory
accesses sec 3.5M

+

1.5 MIPS




ADDENDUM A

CONTROL SURFACE COMPUTER PROCESSING
FUNCTIONS AND SENSOR-ACTUATOR DIAGRAMS
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ADDENDUM B

FUNCTIONAL LISTING OF INSTRUCTIONS




Mgpemonic

LDU
LDUS
LULB
LURB
LDL
LDLS
LLLB
LLRB
LDA
LDAS
LALB
LARB
LDB
LDBS
LBLB
LBRB
LDC
LDCS
LCLB
LCRB
STU
STUS
STLS
STAS
STBS
STCS

LGAD 'STORE INSTRUCTIONS

Instruction Description

Load UR from Program Memory
Load UR from Scratchpad Memory
Load UR (Left Byte) Immediate
Load UR (Right Byte) Immediate
Load LR from Program Memory
Load LR from Scratchpad Memory
Load LR (Lefi Byte) Immediate
Load LR (Right Byte) Immediate
Load XA from Program Memory
Load XA from Scratchpad Memory
Load XA (Left Bvte) Immediate
Load XA (Right Byte) Immediate
Load XB from Program Memory
Load XB from Scratchpad Memory
Load XB (Left Byte) Immediate
Load XB (Right Byte) Immediate
Load XC from Program Memory
Load XC from Scratchpad Memory
Load XC (Left Byte) Immediate
Load XC (Right Byte) Immediate
Store UR into Program Memory
Store UR into Scratchpad Memory
Store LR into Scratchpad Memory
Store XA into Scratchpad Memory
Store XB into Scratchpad Memory

Store SC into Scratchpad Memory
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Execution Time

0

(2]

.25
.25

.25
.25

2.
1.
1
1
2
1
1
1
2
1
1.25
1.25
2.

1
1.25
1.25
2
1
1
1
2
1
1
1
1
1

.25
.25

15
.5
.15
.75
.15




ARITHMETIC INSTRUCTIONS

Mnemonic Instruction Descripti on Execuiion Time
ADU Add to UR from Program Memory 2.0
ADUS Add to UR from Scratchpad Memory 1.5
ADBU Add to UR (Right Byte) Immediate 1.25
ADBL Add to LR (Right Byte) Immediate 1.25
ADBA Add to XA (Right Byte) Immediate 1.25
ADBB Add to XB (Right Byte) Immediate 1.25
ADBC Add to XC (Right Byte) Immediate 1.25
AMS Add to Scratchpad Memory from UR 2.5
DIV Divide UR & LR by Program Memory 10.75
DIVS Divide UR & LR by Scratchpad Memory 10.5
MPY Multiply UR by Program Memory 6.0
MPYS Multiply UR by Scratchpad Memory 5.75
SBU Subtract Scratchpad Memory from UR 2.0
SBUS Subtract Scratchpad Memory from UR 1.5

REGISTER INSTRUCTIONS

Mnemonic Instruction Description Execution Time
ABSU Absolute Value of UR 1.25 - 1.75
CILB Clear Indicator (Left Byte) Immediate 1.25
CIRB Clear Indicator (Right Byte) Immediate 1.25
CPLU Complement UR 1.5
INV Invert UR 1.25
SILB Set Indicator (Left Byte) Immediate 1.25
SIRB Set Indicator {Right Byte) Immediate 1.25
TSU Transfer SR to UR 1.25
TUS Transfer UR to SR 1.25
XUA Exchange UR and XA 1.75
XuB Exchange UR and XB 1.75
XucC Exchange UR and XC 1.75
XUL Exchange UR and LR 1.75
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Mnemonic

CLR
CLRI
ENBL
INHB
SLZ
SLZD
SLZX
SRC
SRCD
SRS
SRSD
SRSX
SRZ
SRZD

Mnemonic

ADD
ADDS
ADMS
LDD
LDDS
STDS
SBD
SBDS
ABSD
CPLD
ZRD
NRM

INPUT /OUTPUT INSTRUCTIONS

Instruction Description Execution Time
Clear Device Controller 1.25
Clear Interrupt Specified 1.25
Enable Interrupts from Device 1.25
Inhibit Interrupts from Device 1.25
Shift UR Left - Enter Zeros 1.25 + .25(n)
Shift Double Left - Enter Zeros 1.25 + .25(n)
Shift Double Left by XC - Enter Zero 1.25 + .25(n)
Shift UR Right - Circulate Bits 1.25 + ,25(n)
Shift Double Right - Circulate Bits 1.25 + .25(n)
Shift UR Right - Repeat Sign 1.25 + .25(n)
Shift Double Right - Repeat Sign 1.25 + .25(n)
Shift Double Right by XC - Repeat Sign 1.25 + .25(n)
Shift UR Right - Enter Zeros 1.25 + .25(n)
Shift Double Right - Enter Zeros 1.25 + .25(n)
DOUBLE PRECISION INSTRUCTIONS
Instruction Description Execution Time
Add Double from Program Memory 3.0
Add Double from Scratchpad Memory 2.
Add Double to Scratchpad Memory 4.25
Load Double from Program Memory 3.0
Load Double from Scratchpad Memory 2.5
Store Double into Scratchpad Memory 3.0
Subtract Double from Program Memory 3.0
Subtract Double from Strachpad Memory 2.5
Absolute Value of Double Register 1.25 - 2.25
Complement Double Register 1.7 - 2.0
Zero Dobule Register 1.5
Normalize Double Register 2.0 + .25(n)
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LOGICAL INSTRUCTIONS

Mnemonic Instruction Description Execution Timc

NDU And to UR from Program Memory 2.0

NDUS, And to UR from Scratchpad Memory 1.5

ORU Or to UR from Program Memoly 2.0
ORVS Or to UR from Scratchpad Memory 1.5

CBSP Clear Bits Specified by Bit Mask 2.75
SBSP Set Bits Specified by Bit Mask 2.75
SKSP Skip on Bits Specified by Bit Mask 2.0 - 2.25

BRANCHING INSTRUCTIONS

Mnemonic Instruction Description Execution Time

DSSZ Decrement and Skip if Scratchpad

is Zero 2.5 - 2.75
JINT Jump to Service Interrupt 8.0 ¥
JMP Jump Unconditional 1.5
JMPI Jump Unconditional, Indirect 2.0
JMS Jump to Subroutine 1.5
JMSI Jump to Subroutine, Indirect 2.0
JSNS Jump After Device Sense 2.75
RTN Return from Subroutine 1.0
RINT Return from Interrupt Routine 5.0
SIE Skip if Program Memory Equal to Uk 2.0 - 2.2
SISE Skip if Scratchpad Memuory Equat to Ul 1.75- 2.0
SIG Skip if Program Memory Greater

than UR 2.0 - 2.2
SISG Skip it Seratchpad Memory Greater

than UR 1.75- 2.0
SIL Skip if Program Memory Less

than UR 2.0 - 2.2
SISL Skip if Scratchpad Memory Less

than UR 1.75- 2.0
SKLB Skip on Indicator (I.eft Byte) Immediate 1.25 - 1.5
SKRB Skip on Iudicator (Right Byte) Immediate 1.75 - 2.0
3KR Skip if Device is Ready 1.75 - 2.0




ADDENDUM C

SIGNAL PROCESSOR MACRO LISTING
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REAL VECTOR OPERATIONS

Vector Clear

Vector Move

Vector Negate

Vector Add

Vector Subtract

Vector Multiply

Vector Divide

Vector - Scaler Add
Vector - Scaler Multiply
Vectur - Signed Squared
Vector Absolute Value
Vector Square Root

Vector Logariim (Base 10)
Vector Natural Logarithm
Vector Exponential

Vector Sine

Vector Cosine

Vector Arctangent

Vector Arctangent of (Y X)
Sum of Vector Elements
Sum of Vector Squares

Dot Product of Two Vectors
Vector Float

Vector Scan and Scale (Fix)

134




VECTOR MAXIMUM MINIMUM OPERATIONS

Maximum Element in a Vector

Minimum Element in a Vector

Maximum Magnitude Element in a Veclor
Minimum Magnitude Element in a Vector
Maximum and Minimwum of a Vector
Maximum and Minimum Magnitude of a4 Vector
Vector Maximum (of Two Vectors)

Vector Minimum (of Two Vectors)

Vector Maximum Magnitude of Two Vectors

Vector Minimum Magnitude of Two Vecinrs

VECTOR FILTER OPERATIONS

Vector Polynomial Evaluate

Difference Equations

4 Pole Filter (Difference Equation)

COMPLEX VECTOR OPERATIONS

Complex Vector Multiply

Comptlex Vector Reciprocal
Complex Vector Magnitude (Square)
Rectangular to Polar Conversion

Polar to Rectangular Converstion

MATRIX OPERATIONS
! Matrix Transpose
Matrix Multiply

Matrix Multiply (Dimension 32)

Matrix Inverse
Matrix Vector Multiply (3 - 3)
Matrix Vector Multiply (4 - 4)
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FAST FOURIER TRANSFORM OPERATIONS
Conmiplex FFT

Real FFT

Scrambled to True Order FFT Passes

Bit -Reverse Order an Array

Real Transform Unravel Pass

SIGNAL PROCESSING OPERATIONS

Convolution (or Correlation)
Wiener -Levinson Algorithm
Bandpass Filter

Power Spectrum

Complex Cepstrum

Inverse Complex Cepstrum

Schaffer's Phase Unwrapping
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. INTRODUCTION

The attainment ol a reliable self-diagnosing design necessitates that
faults be detected when they occur, Subsequently, the errors produced
by the faults must be masked or the faulty unit should be removed from the
signal chain and replaced with an operational equivalent.

A knowledge of the error characteristics is necessary in order to detect
these errors. This study is concerned with the errors produced by integrated
semiconductor circuits, particularly large scale integrated (LSI) circuit
devices utilized in processors, which includes memory and microprocessor
devices. These LSI device ervor characteristics differ from earlier, smaller-
scale devices in that one or more taults may produce one or more errors.
Wang and Lovelacel present data that indicate that single bit evrors for
memory devices mayv represent only 75-80'7 of the total error population.
Their work also indicates that the compositon of the failure population has a
significant effect on the reliabitity,. Consequently, error protection techniques
have been required to handle both single and multiple stuck-at faults. Further
attempts at characterizing the error modes have been unsuccessful, primarily ¥
because of insufficient data on available [.SI devices. This is due, in part,
to the recent introduction ot manv of the parts, but also to the relatively high
obsolescent rate of some of these devices, such as random-access memory
(RAM) and read-only memory (ROM) devices. The net result of this condition
is that the number ot errors that must be accommodated can vary between a
single error to the entire set of outputs or inputs that are related, such as
all of the output of @ port, This model then results in the elimination of many
otherwise valuable techniques.

The st -diagnosing processor must, then, be able to detect multiple
mternal errors and determine the location ol the failure with sufficient

resolution so that the subsegquent mamtenance action is quick and i
effective., This approach has the advantage ofl:
1)  Easy error detection, since the errors are detected
(usually) upon therr hirst occurrence. The operation
of the processor in the tailed state is considered during
the desian.
2)  Automatie detection of a larve percentape of errors.
Few undetected crror- occur,
3)  simple, fast diagnosts due to built-in error detection.
4) More effective handline of mmeonsistent errors, such ]

as intermittents and transients. Mhagnosis is initiated
immediately upon detection of the ervor.

1 Wang, S.0., Lovelace, K., "Improvement of Memory Reliability by Single
Bit Error Correction”, COMCON 77,
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5) Manual maintenance is simplified, computer maintenance
costs are reduced.

Fault detection techniques have been emphasized because of the poor
reliability of systems possessing less than complete fault detection. For
systems based on standby principles, Losq2 has shown that the coverage
affects the reliability in two ways -— it reduces the maximum reliability of
the system and it modifies the shape of the perfect coverage reliability curve
by a factor of

exp (- A (1-¢)T),

where

A - failure rate,
= coverage in percent, and

c
T = time interval

The price of increased fault tolerance obtained through the commitment
of additional hardware resources is an increase in failure probability due to
these added resources. Techniques that provide reliability enhancement and
self-diagnosis are particularly effective for these applications provided that
the maintenance intervals are short compared to the system MTBF,

The resulting guidelines should

1) provide computational capability that is consistent
with the previously identified baseline processing
requirements,

2) provide a modular processor architecture that is
adaptable to changing requirements driven by either
changing mission or variety of application requirements,

3) match the 1977 technology and maint« n flexibility
with respect to anticipated improvements in the state
of the art.

2 Losq, J., "Influence of Fault Detection and Switching Mechanisnis on the
Reliability of Standby Systems”, FTC 75
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H I, REVIEW OF RELIABILITY TECHNIQUES FOR LSI DEVICES

There are two basic techniques for self-diagnosing systems with autoniat:
detection:

1)  The informatioa signals of the system are encoded in
such 4 manner that the signals form a code word in an
errvor detecting correcting code under fault-free con-
ditions. When a detectable fault occurs, an error is
produced that is a non-code word. An example of a
single ervor-detecting code is replication with com-
parison voting.

2) Periodic diagnosis of all modules for error detection.

By itselt, the second technique 1s not recommended for fault diagnosis
because:

1) Incoasistent errors may not be detected and their effect ‘
on the state and data base of the svstem canno!l be pre- ¥ {
dicted. ;

' 2)  Rollback restart snapshots of the state-of-the-machine
requirements are frequently not consistent with real
time applications.

3)  Diacnostic tools tor producine test vecetors for multiple
. faults and ervors are only now beine developed and the
fault location accuracy is quite suspect.

Combinations of these two basic approaches are also atilized and will ;
‘ be discussed. The periodic approach will most likelv be the basts of the |
1 manual diagnosis that supplements the automatic on-line error detection and '
locates the failed component to the self-diagnosing processor replaceable
| module level. Thus, the overall maintenance action is a combination of the
i spatial redundancy of the coding approach and the temporal redundancy of the
periodic diagnosis.

1. Coding Techniques

The simplest codes are those of replication combined with a form of
comparison. Duplication with comparison is perhaps the simplest error
detecting technique. In this technique, two independent systems compute the
same function and the results are compared to detect differences. When an
error exists, the 1esults of the independent svstems will differ and the
comparison will detect the difference. The comparison can usually provide
location information (identify the bit location) if desired.
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The simplest error correcting technique using coding involves the use of
triplication. In this technique, three independent systems compute
the same function and the output is the majority function of the results ot
the three systems. This voting of the output is performed on a signal-by-
signal basis and the effect of single errors is masked. Such systems are
commonly designated as triple-modular redundancv (TMR). As in duplication
with comparison, location information can be derived.

Extension of the devree of replication bevoad three has been labeled
N-modular redundancy (NMR), where N modules are used to execute the same
function and (N-1) 2 or fewer failures are masked. The majority function,
which produces the output, has N inputs and a threshold equal to the largest
integer greater than or equal to N 2, As with other replication schemes,
location can be derived at the cost of additional resources.

Variations of the replication code include svstems that both correct
errors and locate the source of the error. As errored modules are
identified, thev are switched out of the system and replaced by standby
modules. When inserting the standby modules into the system, anyv internal
memory must be initialized,

Another variation is an adaptive technique, where the threshcld of the
majority function is reduced as errors are detected and the offending module
is switched out of the svstem. Initially, the threshold is set to N 2: then,
as errors are detected, the threshold is lowered to (N-1)/2, (N-2),/2, (N-3),2,
and so on, until the number of madules is reduced to two or three.

2. Conventional Coding Techniques

Conventional coding techniques have been developed that detect and or
correct errors. Only a subset of ald the coding techniyues is of interest
for this studv. This subset is useful for checking computations and is usually
restricted to binary codes or codes that are closely related to them. A
successful utilization of computational coding techniques in self-diagnosing
systems depends largely on the nature of the function to be protected by the
code. Hence, after an initial general discussion of codes, the effectiveness
of coding techniques will be considered with respect to the memory, processor,
control, and internal buses of a self-diagnosing processor.

The computational codes that were considered are the linear block codes,
the arithmetic codes, and checksum codes. Hamming and parity and b-adjacent
codes were the linear block codes specifically evaluated for transmission and
storage. Arithmetic codes were examined, primarily with respect to
arithmetic operations, although their use for the protection of storage was
examined. So-called low cost codes, as defined by AvizienisY, received most
of the attention. These include the AN and residue codes. The b-bit byte
checksum codes examined were those having a check symbol of the form 20,

3 Avizienis, A., "Digital Fault Diagnosis bv Low Cost Arithmetic Coding
Techniques”, Proc. Purdue Centennial Year Svmp. Information
Processing, 1:81-91.




Application of these techniques to large-scale integrated logic circuits
has not generually been successful in the sense that the implementations
were low cost. There are a number of reasons for this: first, for devices
such as a microprocessor, there is a mixture of structures and operations
that the code must span if it is to be applied external to the device. Since the
codes, in general, are matched to the structure and operation, this method
of attack leads to difficulties that are still unsolved.

If the coding techniques are applied within the device, the size of the
chip must be expanded and the number ol pins increases unless the pin can be
time shared. Generally, this is not possible. Applying coding techniques
within a device of the size of a microprocessor at the register-to-register
level leads to a redesign of the function and usuallv necessitates an increase
in chip size. Since these LSIdevices are already at or near the current
state-of -the-art in integration, the increase in chip size results in a loss
of vield, which, already, is relatively low at least compared to smali-scale inte-
eration (SSI). Since the coding techniques examined thus far result in an
increase in circuitry of at least twice the original device, the application
of coding techniques resuits in uneconomical designs because of the low vield.

The second major source of difticulty in applving coding techaniques to
hiehly integrated devices 1s the lack of good error models that relate faults
and errors. As indicated in the Introduction, it is believed that single stuck-
at fault modeling results in insufficient fault coverage. It has been shown
that the effectiveness of the error detection is verv sensitive to coverage,
particularly in the range of interest for self-diagnosis. Hence, it has
been deciaed that multiple errors must be considered. Implementation
costs of multiple error codes in the range of four to eight bits has been
found to rise rapidly. Even for the so-called unidirectional faults4, the
implementation rosts increase significantlx and the computational delavs
increase with increasing word length., )

As will be seen in the application of redundancyv techniques to the
various functional units of a processor, most redundancy techniques that are
theoretically interesting are only applicable at the component level. Technology
constraints at the LSI level of integration tend to dictate that redundancy should
be applied over chips not within the comuponents of chips. Hence, relatively
few redundancy techniques remain relevant. Consequently, architectural
considerations are of primary importance in the design of a self-diagnosing
proces<or, Recovery from the fault, beginning with the processing of any
locat “‘ormation through, possibly, the restoration of the processing and
redundan s the major issue. As will be seen, however, a number of these
redundancy «.chniques, originally intended for low-level application, form
the basis for enhancing svstem reliability.

4 All components of the error value have the same sign. That is, the only
erroneous bits are either 1's changed to 0's or 0's changed to 1°s but not
both.




3. Processors

Bit-slice microprocessors such as the AMD 2901, in contrast to mono-
lithic microprocessors, allow the use of redundancy techniques at a lower
level and, therefore, are better candidates for redundancy techniques. Both
arithmetic and parity prediction techniques have been successfully applied
to arithmetic operations and can be effectively used for the protection of the
microprocessor arithmetic logic unit (ALU). But these techniques do not
check logical operations. Of greater consequence is the fact that low-cost
coding techniques for checking logical operations for error detection have
not been discovered. It is generally accepted that the simplest error
detecting codes for logical operations aniount to duplication. Previous imple-
mentations of error detecting designs frequently resorted to duplication.
Variants of these codes have been developed for ripple carry arithmetic units
and carry lovk-ahead designs in which the carry circuits are disabled. For
bit-slice microprocessors similar to the 2900 series, which incorporate hyte
carrv look -ahead, the effect of incorporating these arithmetic coding techniques
is significant. High-speed arithmetic structures, using cascades of 2901's and
one or more special carry look -ahead devices, can be implemented. Speedup
techniques such as these considerably increase the execution speed u! these
structures compared with ripple-carry techniques, particularly for long words.
Addition of this code circuitry to the microprocessor and the high-speed carrv
look -ahead would reduce the execution speed of the microprocessor and,
possibly, the high-speed carry look-ahead. Also, larger chips would
be required to implement this additional circutiry barring the use of higher
density fabrication techniques. Hence, this development was not pursued
farther.

Alternatively, the logical operations can be removed from the ALU and
implemented separately. But this approach suffers from increased delayv
penalties as well as the increased implementation costs cited. Implementation
of the logic execution circuitry external to the microprocessor suffers from
the difficultv that one or more of the operands must come from the micro-
processor's register file through the output port, This increases the execution
time for single-register file sourced operands and, probably, would double the
eycle time for two register file sourced operands. 'Thus, this approach was
also not recommended.

Instead, it was concluded that for a self-diagnosing computer, repli-
cation offered the best trade-off in terms of protection and implementation
and execution time resources for the current state-of-the-art of integrated
circuit technology. Conventional coding techniques were less effective {or
the multiple error case, when applied to the highly integrated LSI devices,
than the single error case associated with the mdeium and small-scale inte -
grated circuits,

For monolithic microprocessors, replication appears to be the best
solution. As will be seen, after memory and bus functions are examined,
TMR is believed to be the best general solution for monolithic processor
applications.
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4. Memory

Conventional coding techniques are much more favorably applied to
memory functions than processors. Part of the reason is that coder decoders
for arithmetic and arbitrary logic are just about as complex as the function
they are protecting. But this is not true for memories. For instance, the
encoder decoder for a 4K bv 29 bit ‘word memory5 can be realized for about
77 of the simple memory resources. In addition, semiconductor LST memory
devices have developed in such a way that many of the problems associated
with other memory technologies have been eliminated. Addressing errors
are confined to a single chip under the single fault assumption by including
on each chip its own decoder, along with the read and write amptifiers and
read write control circuitry.

The evaluation of the implementation requirements of codes for the
protection of menory is primarily concerned with three major contributors:

1) The number of redundant or check bits that must be added
on a per word basis.

2) The complexity of the associated encoders and decoders.

3) Additional delav incurred as a result of adding protec
tion devices since these delays usually increase the
address and or the cvcle time of the memory

Wensley, et al 5, discuss the bounds on redundancy codes. properties
of Hamwming, Hong Patel, Abramson, and Gilbert codes that almost achieve these
bounds, and the performance of these error correcting code«. The lower
bounds for the number of redundant digits, r, as a function ¢° the ntmbtor of
information bits, k, are listed in Table TI-1 which is tak-n from Wenslef's.
The bound varies with the number of burst code bits in a protected byte of
width b, and the type of code. The S columns list the number of digits
required for cyclic burst binary codes and the S columns iist those for the
single bvte correcting codes. (Note that r in tils is equal to b multiplied by
the entry in the appropriate column, either S _ or S_..) Hamming codes, with
b - 1 and the Hong Patel codes for b 2 and 'F ;u-h?ovo the redundancy implied
by the entries listed in the SF columns,

An indication of the decoder complexity for a particular cellular decoding,
scheme for generalized Hamming codes discussed by Wenslev in (5) is presented
in Table II-2 for a 24 bit word memory of 4096 words. Memory chip s1ze s
maintained at 4096 by configuring the chips as tollows: (1 bit wide - 4096),

(2 bits wide ~ 2048), (4 bits wide - 1024), and 8 bits wide - 512). The codes

are single, b bit wide, error correcting Hamming codes, For this
implementation, the 2-bit wide byte (2 bits wide 2048 word memory chip)
vields the best design in terms of number of implementation costs, .., number
of chips.

5 Wensley, J.H., Leviin, K.N., Green, M W .| Goldber, J, and Neumann,
"Design of a Faull Tolerant Airborne Digital Computer™, Vol, I, Stanford
Research Institute, N74 17909, p... 26




TABLE II-1. REDUNDANCY FOR CORRECTING CYCLIC AND BYTE BURSTS

4 CHECK DIGITS r

7
k b - 2 b 4 :
BITS b - 1 Sc St Sc Sg
4 3 5 4 7 6 ;
8 4 5 5 7 6 i
12 5 6 5 8 7
16 5 6 6 8 o ‘
i
24 5 6 6 9 7 i
28 6 7 6 9 8 !
56 6 7 7 10 4 !
60 6 8 7 10 8 1
64 7 8 7 10 9 ‘
——————————— Bt e it e R e R f
128 8 9 8 11 10
256 9 10 3 12 10
512 10 11 10 13 11
1024 11 12 11 14 12 J
TABLE [1-2. SUMMARY OF DECODER COMPLEXITIES FOR CELI.ULAR
DECODING OF GENERALIZED HAMMING CODES
MEMORY ¥ OF ¥ OF i OF 5 OF
CHID "CHECKS" | FRAMES CHIDPS DECODER
CONI'TGURATION FRAMES (TOTAL) TOTAL GATES
1 - 4096 5 29 29 1560
2 - 2048 3 15 30 936
4 - 1024 2 8 32 2496
8 - 512 2 5 40 19968

FRAME NUMBER OF BITS PER WORD OF THE SELECTED MEMORY
DEVICE

« FRAMES (TOTAL)  NUMBER OF FRAMES (DEVICES) IN ONE ROW OF
MEMORY DEVICES
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These codes mask all single byte errors. To achieve diagnosis of the
errors, they should be augmented to provide detection. In some cases, this
will change the number of redundant check bits and the decoder complexity.
However, it is still believed that the optimum byte width is b = 2.

Another less elegant coding approach is to employ parity. Jack, et 316,
has compared various versions of parity with checksum and Hamming codes for
the purpose of achieving a self—checking7 semiconductor memory. In this
paper, Jack et al, points out the importance of coverage, particularly with
respect to multiple errors in memory devices. Three different forms of

parity are considered. They are:
1) Single bit parity across the entire memory word.

2) Byte wide parity across 8-bit bytes using a single
parity bit per byte.

3) Chip-wide parity provides onc parity group for each bit
position in a chip for a group of bvtes. For a 16-bit
data word implemented using 4-bit wide memory devices,
four parity check bits are required with four parity
checkers.

From coverage considerations, thev conclude that, on the averave, chip-
wide parity and Hamming-like codes provide the best self-checking coverage
for data faults of any of the detection approaches investigated. They are also
unsurpassed in terms of worst -case possible failure modes. In presenting the
results of the coverage analvsis, they note that no exact overall coverave
figures can be determined unless all the failure modes and the likelithood of
their occurrence for the semiconductor devices are known. Their results for
a representative memory reguirement of 1K words - 16 bits under conditions
of a sinugle fault are shown in Table 11-3. Thev observe that, for a one
microsecond cvele time mewory, there is no execution time penalty for chip-
wide parity or Hamming code checkers because the overhead of 85 nanoseconds
for each word can he overlapped. The variation in delay across the approaches
appears to be sufficiently small that delayv times should not be a miajor factor at
this speed of memory operation (1 microsecond cvele time),

The results with respect te the Haimming and chip-wide parity code
approaches are summarized in Table I1-4, A comparison of the results shows
that:

6 Jack, L.A‘., l\'lnn?\'_, L.L.. Berg, R.O., "Comparison of Alternative
Self-Checking Techniques in Semiconductor Memories™, COMCON 77,
pg. 170-173.

7. A totally self-checking circuit is a circuit that is self-testing for a
normal input set, N, and a non-trivial fault set, F, and fault secure
for N and a non-trivial fault set, F_. A circuit is self-testing if, for
every fault from a prescribed set, The circuit produces a nnn~cnc,ie space
output for at least one code input. A circuit is fault secure if, for
every fault from a prescribed set, the circuit never produces an incorrect
code space outpul for code space inputs.

A
LT




A

LYVHO NOSIMVAINOD SAOHLAW LSAL-ATAS AHOWIIN

“g-11 3T4dVL

. G ! fa A 414 AM..(,.ﬂ,
M” 0Z1 8t ./_N m. 6 ¢ 51 £ 1 L VAT B }C“ .C,,.‘Humu,wf STEE SUFENTE N
M s Z X { Y
071 | 8t A STl oty | e 9 ¥l ] ¢ [ SR RO AL VIH oo Auimmey g
su 04 8¢ Ay 9 62 11 £ ] L 7o AL | Wil Uotleadey deaay apdial
su (¢ 8¢ N9 5701 Gy 0¢ 9 71 x4 T x A1 wvd It (T2 Tujumuey (01
Su 001 1€ AS g [ At I 01 9 7 x Al WNOYd Uelloedao) 1elad afduyc
su 001 It h1s 5711 Vi 0c < St 1¢ I x AT WYY 3tg (1 Rutmmow, ]|
s§u ¢g 1¢ AS Vi $°1 8 bA 9 9 7 x A WoYd UO135a39(¢ 40113 a1gno(]
su ¢g 1€ NG S8 i 91 S 11 |44 1 x A1 WV Y 31 (1 2ulumgepd (y]
- . . . yoreoarddy ucIsyNALI apgnor
€979 { 11 [ Mt 0 A I € et ¢ | 8xzis | Wou oL FIOK Heds wrg (n
sm . , . \ (UOIS123a§ ATynod
(1°¢ 6 AV 1 0 ¢z £ £ 0 L 7 X Al WOY A23YD WS Alowaw (g
., 3 . (UOT8I"3id a[RUTG)
smwoyl L L6 | Avil 0 AN e lo|¢ 7 x AT | Wo¥ Aday) ung Kiowsy (f
(31q-9) £31aeyg
su M
09 [ os | s Y Sz |t ¢l s |9 |8xais | wou opimd iy (9
su ¢g 174 Ay Vi 1 9 1 S S 7 X Al WOM (3119-%) aljaeq
su ¢g | 6z MY ® € 6 Vi S 1 | v x 962 | Wy api¥-dIyn (¢
su Q%1 £l AC $°Z 1 Vi 1 £ 9 7 X Al WOY Altaeg
su 0¢1 [ AT € $°1 3 Z Vi 81 T x N1 WVd opImM=-234g (%
su 0¢1 9 Al S 1 ST S € I4 S 7 ox AT wOod L3taeq
su0z1 | 9 AT € 1 S 1 Y L1 T x M1 | W 114 A1BuUTS g
* ¢ I831-312% oy
0 0 0 0 o Jo ool v ¥y I=3es on
AR T T
al 1« 1 . R B
0 0 ) 0 S O 1O tv ]9 gog | V8 WV
5% |8z| 28 | g8 [gx2(2cisx| a8 =23 [ =23
58 1881 22 | 85 |22 182 1B2| 5| 23] 252 | =% QOH1TA
- = x o] 1 o o i > ) R [or SRS 1 =<
— < > ~< — < =) B wmn o< <
3 w - - > [¢2] =
=2 | 3| 2 8 518 | 22
5 g Z 2| 2z
x 4 > - Z
i (ZHOKD) = ez
« VIV qy¥vod 1NNOD 21




1001 00T ¢ 1E Ly - A Y 3lE ¢
3001 SO0t 8 A€ a6 4 AN SISRNIEZ B I bt oot 4

: U ) (95 (4 -]
‘.ooﬂ . %ﬁ J ! > Ut ~os LITIE4 apimed ity
1001 cul U | 3 Oy e AV
! |
i s
Le3yCay d3ion e st oAVl AN T DR v ol [ CLTANe T Tl i
. . .. . L . . . h _ .
AEANT, 33V 1V a ' . ' : T : o C el
{ZA0L 33Y5 e ) e ) i : _
A b . i ot e e e S s et < ras s et it e ot v . s w4 o o el —abi et - ~ e i -

NOSIHVd WO A40-3AVYL NOILVINAWITIINT AHVININAS "#-11 T4V L




1) Both chip-wide and Hamming-like codes provide extremely
high coverage for massive on-chip failure modes.

2) Both Hamming-like codes and chip-wide parity achieve
100 error detection for either single device data or
address faulls for chips no wider than 4 bits.

3) Hamming-like codes give better detection for multiple
device failures than simple parity schemes at an
increase in hardware.

4) Chip-wide parity requires fewer parily bits, less de-
tection circuitry, and has less interconnect complexity,

3) Neither approach permits errored data or instructions
to be passed to the CPU assuming single chip failure.

Of the above approaches, only Hamming-like codes have the potential
for error correcting capability. Techniques for designing error-free decoding,
coupled with error correcting memory, have been described by Carter, et ald,
Single error correcting double error detecting (SEC DED) Hamming-like codes
have been used to protect memories where it is assumed that single failures
affect one bit of the word and two failures affect two bits of the retrieved
word. FEarly versions of this approach used "self-testable” SEC DED decoders
and encoders or translators for converiing from bus parity code to memory
codine and vice versa. Here self-testing is understood to mean circuits that
test the proper functioning of every component during normal operation. The
decoding circuitry is dvnamically tested while it performs its function of
correcting erroneous data without mistaking these errors for errors caused
by circuit faults and vice versa. The results of applying these techniques to
memories of 32, 64, and 128 bits are shown in Table IT-5 from Carter, et al.
The actual data bits are listed in the column labeled k and the redundant or
check bits required are shown under the r column (n is the sum of K - r).
The next column to the right, labeled "Conventional SEC DED to Byte Parity
Circuits”, lists the circuils needed to translate from the SEC DED memory
code to the bus parity code using conventional design techniques. The next
column to the right, labeled "Self-Checking SEC DED to Byte Parity Circuits™ |
gives the figures for the self-testing version {(including translation). As seen
in the last column, only a small increase was required to achieve self -checking
and this difference decreases with word length., Hence, translators can be a
source of large implementation cost and etther should be avoided if possible or
should be minimized by choosing compatible codes to the extent possible.

8 Carter, W.C., Jessep, D.C., and Wadia, A., "Error-Free Decoding for
Failure Tolerant Memories, FTC T1.
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TABLE II-5. COMPARISON OF CONVENTIONAL AND SELF-CHECKING
MEMORY IMPLEMENTATIONS

CONVENTIONAL SELF-CHECKING
SEC DED TO BYTE SEC 'DED TO BYTE

n___k _r  PARITY CIRCUITS _ PARITY CIRCUITS '/ INCREASE |
32 26 6 1050 1130 7.4
64 57 1 2300 2380 3.5
128 120 8 4950 5000 1.1

- Total Number of Bits in Message Being Protected
k = Total Number of Information Bits in Message Being Protected
r = Total Number of "Check” Redundancy Bits In Message Being Protected

n - ki+r

This work has led to the development of techniques for designing self-
checking circuits not only for memories but for all computer functions, such
as the arithmetic and logic unit and control. In the case of memories, Carter
and McCarthy9 have extended these principles and have designed a fault -tolerant
memory based on a modified Hamming-like SEC DED code. The logic of this
memory is designed to be fault secure, seif-testing, and is claimed to exhibit
good cost ‘performance. The testing procedures are designed to detect faults
and prevent error accumulation. In the recovery process, single error
correction can be validated and most double errors caused by two faults
corrected.

Husband and Szygenda10 have provided a detailed synthesis and analysis
of a cost effective, ultrareliable, high speed, semiconductor memory svstem.
A 16K word by 64 bit memory system with a 250 nanosecond cycle time was
designed that corrected over 997 of all single faults. The approach is based
on a single error Hamming code, and support electronics that are designed
to cause all faults outside the memory groper to produce no more than one
bit error in any one memory word. The error-correcting circuits make up
less than 2% of the total circuitry and the increase in circuitry over the simplex
system is less than 20%. Cycle time is not increased unless a fault occurs.
The implementation results are tabulated in Table IT-6 taken from Husband and
Szygenda's paper.

S5 Carter, W.C., McCarthy, C.E., "Implementation of Experimental Faull
Tolerant Memory, IEEE Trans. on Computer, C-25, No. 6, June 1976,

10 Husband, E. W., Szygenda, S.A., "Synthesis and Analvsis of a Cost Effec-
tive, Ultrareliable, High Speed, Semiconductor Memory System, IEFE TC on
Reliability, Vol. R-25, No. 3, August 1976,
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TABLE 11-6
COMPARISON OF 16K BY 64 BITS

SIMPLEX AND FAULT TOLERANT MEMORY SYSTEM

- - FAULT I
SIMPLEX TOLERANT INCREASE IN PERCENTAGE
SYSTEM SYSTEM DEVICES OF INCREASE
Memory 4096 4608 512 12.5
Address 48 128 80 167
Write Enable 6 16 10 167
Chip select 10 31 21 210
Data In 8 9 1 12.5
Data Qut 40 45 D 12.5
|
Frror Correction 96 96 1
|
!
Total 1208 4933 725 17.2

To summarize, the particular memory protection approach is a function
of the memory cvcle time, the word length, the protection used in the rest of
the system, and the size (capacity) of the memory. Assuming a system
compatible memory cvcle tinie and a memory device selection based, primarily.
on minimum coust the recommendad protection approach as a function ot
memory size is given in Table 11-7.
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5. Control

Until recently, replication was the only known method of control unit
error detectionll, However

b

I

with respect to smoele taults. I)mzl'j showed that totally self-checking con-
cents could be apphied to svnehronous seguential machines (Moore tvpe) in
additton to the conbiicorie aveuits considered earlier assuming that the
clock tine is tault-mree Later, Ozouner 14 developed approalc%ms for designimg
“ describes the
desicn ol totally sett-checking computers including the microprogrammed con-

totally self-checkmye asvncehronous sequential machines. Ho

rrol unit. Tins machine s desiened to halt upon the detection of a fault
and an be instrnnented to provide fault location information to within a

tew cate levels.  Ashjaec and Reddy 16 deseribe totally self- checking checkers
for separable codes and pomnt out that| for certain desicns and separable codes.,
the correspondine cheekers cannot be realized.  For Tvpe T checkers (sec

' Reddy) of totally self -checking svstems, thev detine sufficient conditions
on separable codes that insure that the chevker can be realized.

with an IsDimplementation of the checker. However, a lower level of inteet -
tron tmplementation, such as MSI or SSI. would probably nieet the sinele ervor
| model, Such an approach would complement many bit-slice microprocessor

control units smee thev ave usually implemented with relatively low -leve)
mteeration devices combied with high-specd, hivhlv integrated nieniory
devices, e, oL read-only memory (ROM) and procrannmable read-only
metory (PROM)

11 Fcekert, J.P ., Weiner, J.R., Welsh, H.F., Mitchell, H.F., "The UNIVAC

Svsten: ™, AIEF-IRE Conf. £-16, 1951 .

12 Tov, W.N. . "Muodutar LSI Control Logic Design With Ervor Detection™,

IEEE TC-20(2). 1971, pe. 161-162.

13 Daaz, M., "Design of Totally Self~-Checking and Fail Safe Sequential
Machines”, Proc. Fourth Annual International Svmposium on Fault
Tolerant Computing, June 1974, pg. 3-19 - 3-24.

14 Ozguner, F., "Design of Totallv Self-Checking Asvnchronous Sequential

Machines”, Coordinated Science Laboratorv Report R-679, Univ. of
Minois, May 1975,

15 Ho, D.5., "The Design of Totally Self-Checking Systems™, PhD Thesis,

Univ, of Illinois, 1976,

16 Reddy, J. M., Ashjaee, M.J., "On Totallv Self-Checking Checkers for

Separable Codes”, I[EFE TC, Vol. C-26, No. 8, August 1877.

g________________—_____

the introduction of microprogrammed technigques
to control unit desien has eased the problem since the complexity of the unit

is reduced. This hus led to the study of low -cost techniques for the detection

of controlb unit errors. Tov, et at2 designed a self-checking microprogramunert
control unit based on a combination of parity checking, bit compare and inter-
leaving . ff has been shown that this desien can be made totally self-checking

Untortanarely, most of the work is based on a sinele stuck-af -one or
stuck - -zerco-error mode! ot the checker, Consequently, il 15 not compatible




Perhaps more importantly, none of the coding approaches investigated
resulted in low-cost implementations. When all the factors were considered,
the implementation costs were in excess of duplication and introduce additiona!l
delays in the control loop which, time-wise, were already the limiting path.

For these reasons, replication is recommended for the bit-slice micro-
processor control unit, For systems that require essentially uninterrupted
processing, a form of triplication is recommended. Assuming that the LRU
could be as large as the simplex control unit, augmented TMR would provide
sufficient error location resolution, so that resource costs would approximate
that of triplication plus the voters. Speed would be reduce only slightly
due to the added delavs of the voters.

Bit -slice based microprocessor systems that can tolerate "short” inter-
ruptions have the option of considering either replication or some form of
coding. However, even here, replication is favored because real-time error
masking of error correction codes is not needed and replication provides at
least one identical copv of the unfailed structure after the occurrence of
the error,

For monolithic microprocessors, the control unit is considered as a
part of the CPU and the recommendations made in the processor section applv.
Some form of TMR is recommended.

Bus protection depends on the buses and interface failure modes. Alili-
tary standards, such as MIL STD 1553A, and the environment strongly affect
the bus protection approaches that can be considered for a particular application,
The source and sink of the information transmitted over the bus also strongly
affect the protection approach because if the code emploved at either end of
the bus is different from that used by the bus, a code transtator may be re-
quired. If all three employ different coding schemes, two translateors are
required. Depending on the code pair, the translator mayv be quite complex
and itself require protection. It therefore, behovuves the system desiuncer
to utilize as few different codes throughout the system as possible. Where
different codes are required they should be selected to minimize the translator
requirements, and vice versa if two-way communication is to be maintame
across the bus.

For the applications considered here, where the systems are small an |
the number of devices is of the order of 100 or less, the processor buses
should be short and the interface requirements should dominate. Thus, the
problem can be viewed as just an extension of the design of protected loaic,

For monolithic microprocessors, which are most likely to employ some version
of TMR, the processor internal buses are protected by TMR when the functional
units, i.e., processor, memory, are viewed as one legic unit: the buses are
indistinguishable from other signal paths.

For bit -slice microprocessors, the buses between the processor, memory,
and control can be viewed as indistinguishable for many applications. Thus,
the same considerations drive the bus protection problem as the functional ,
units and the same techniques can be emploved. Since the control and processor

154




units will qui’e likety be implemented using some form of replication, the
nature of the problem will be one of transitioning between various forms of
duplication and triplication. The memory (o the control and processor bus
problem is different ter o number of reasons.  First, as just indicated, the
processor and control will) more than likelv, be protected by some form of
replication, while the memory will, most likelv, be protected by somie conven-
tional code, like Hamminy, sSecond, the number of buses can vary between one
and three, dependine on whether the communication is split between an input or
output bus and or shether the bus s sevrecated by function between address
and data. Lastly, the treatment of the control sivnals in the receirvine unis
can vary between ~heckinge whether the =ignal has been correctiv transmitted
to whether the svonal = vroperhs received and returning a signal 1o the

coptrol for recontioaratton mdieating the results of the control transmission -

error non errorv.

7. (‘lx)L'}\

The relintle ceneration and distribution of timing sicnals is needed
to insure proper opergtion of svnchronous sequential circuits o selt-diaenesing
processors. Frrors on these thning or clock lines mav be due to miterconnection
failures or malfunctions 1 the source of the signal. For errors produced by
malfunctions in the veneration mechanisms, errors can be classified as either
catastrophic, which < eguivalent to a stuck -t faglt on the hine, or variational
as m a freguence cimnve. Furthev classiication has been estabhished based
on the cireait used fo monstor the line. It is:

1) Discrete, charve discharge cireuits

2)  Retriggerable monostable multivibrator cireuits
3)  Dicital counter circuits

1) Intecrator circuits

None of the schemes can check the input for all possible errors without
resorting to duplication und each of the circuits ts susceptible o undetect -
able internal faults. Usas17 deseribes a sell-checking periodic signal checker
as shown in Figure 1[-1. Il uses the same hardware as a duplication scheme
using a refrigererable monostable cireuit, but it 1s self-testing and the duplicated
design is not. Additionally, this checker also detects duty cycele errors. Since
M1 and M2 are arranced to run 1809 out -of -phase, the circuit detects uni-
ditectional errors and the fwo monostables can be realized in a single
integrated circuit package without coneern for failures affecting the common
power and ground distribution to the individual circuits. It is recommended,
for effective error detection, that the checker be wired to a memory element
ol clocked module following the last fanout branch, This permits the detection
of faults on anv of the tanout points in the wiring of the clock line.

17 Usas, A.M.. "The Detection of Errors in Periodic Signals”, Technical
Note #45, Stanford University, April 1974.
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M2

____OJ'—L

Figure 1I-1. Totally Self-Checking Periodic Signal Checker

The error indicator is designed to complement the checker and provide visual

output for both fixed and momentary errors, as shown in Figure [I-2. Tt is not
self-testing but is fault secure with respect to all faults affecting only a single
flip-flop.

Other approaches utilize an array of identical oscillator modules to
produce a number of phase-locked clock signals. A technique commonly used
is majority vote among 2f + 1 redundant signals, which ;l)roduces a valid output
if the redundant inputs are suitably synchronized. Daly 8 shows that the
simple majority function is insufficient and that "gliches" or sliver pulses
can result because the output depends on the failed elements during part
of the clock period. He shows that by incorporating hvsteresis as in.line

FFy

FROM — i
CHECKER 5oQ
'

/}.

LIGHT-ENITTING
DIODE

FE2

Q

L] >—

Figure II-2. Fail Safe Error Indicator

18 Daly, W.M., "A Fault Tolerant Digital Clocking System"”, FTC 73,
pg. 17-22.
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receivers, the difficulty can be eliminated. Figure II-3 and 11-4 show one of
four identical elements of a fault -tolerant clock svstem module that will
tolerate the failure of any one element using conveniional TTL integrated
circuits. The circuitry of Figure II-3 is designed to receive and vote on four
clock outputs, A, B, C, and D. It generates the majority functions and produces
pulse outputs correspouding to the falling and leading edges of the majority
function. 710 is a4 monostable multivibrator that determines the clock frequency.
711 is 4 one-shot that estanlishes a lower limit on switching time

A clo K recewver thyster 518 voter) conststs of the lovie ot Freaee 11-3
plus u fhip-flop that 15 <o Uby DRSTA and reset by DSETA . The thp-tlop output
1s the desired <vochrourzed clock stenal and drives the user cireuitrs

Another imtrinsic clock approach emplovs oscillator standby redundancy
and moortty voling with hysteresis. Each oscillator contains switehiny cir-
cuntry to select one of the three oscillators to develop the redundant clock sy -
nals as shown i Freure 11-5. Operation of the circult 15 such that i oscillator
A drivine the majority gates fails, the detector causes its lateh to sct, causing
the switchover locie to select the next avatlable oscullator. I osciliator B's
latch is not set, o provides the clock signal for the svstem. [ however, 3's
Liteh 1s also set, then oscillator C s selected by the crossover switch o drive
the majority vates. By providing external control of the latches. switchover
can be commanded by the usig system for reasons such as excessive [regquency
drift and testine.,

The vehab bty niodel of the svstem s shown in Figure H-6. It can be
seen that, rathier than the conventional redundant voted approach Cireure [1-6a)
where two oul of three oscilllators are required for success. only one out of
three is required (Figure H-60)0 Although the added circuits i the oscillitor
chain slightly merease the failure vate of the A and B oscillator channels | the
net effect 15 increascd reliobility because of the mereased tolerance: only one
oscillator 15 necess=ary for successful operation,

For the selt «dhavnosing applications, a combination ot the standby re-
dundant oscillators and the fault-tolerant receiver, similar to that described
{Figure 11-4 plus a thp-flopy is recommended for synchronization. An crror
indicator circuit should be added for failed synehronizer error location mdica-
ton.




(1910 A S1S3131SAH) I3A1803Y 01D “¢-1I aanstg

_ o7
vsHd
a=nz REIZ aw’, Gz |d
—__ 4a
! vl
REVA
gon
[AZa)
dpuz )
Heo 7, = Ys0Z
VIS
LA
HIuZ qluz|d x
WA v’ 7o)
/44 —
RNV
RIIVANA
ZiEh AR
VouzZ

denZ




z | ﬁ o {
: | | )
i VAR UD'S
e r'_“*,
DEsTA ' '. ‘- ’
VAYERY — ! i .
Db ! AR — —— 712y —e
. 4 | ) j } -
i Ve | ‘
l vt | L
| i -7
| ! Loogy
I
3
r —
.”
L
TONEN —_—
i M7v41

Fieure 11-4. Output Circult of a Clock Element

I F___ﬁ
Low o \
i .
S\W e H
VER
KR Ly

Pt syl b
l > SROPES 01y
~
\ —4
[
\ —
OsCILT A TO l’"v = - T T T T T T T T  aanr T
S (
O OV I
it foowh L‘""‘.
¢
J 0o
RN D _ - _ ¢
<
Pei Figure [1-5. Standby Redundant Oscillator

1, l‘) 0




‘ OSCILLATOR MAJORITY

"“ A ) r VOTER

) OSCILLATOR MAJORITY
| B VOTER

| osciLraTor | | [ magowrry
o VOTER

a. PRESENT MODEL

OSCILLATOR/DETECTOR/LATCH r_J SELEOT
A l_" GATE

OSCILLATOR/DETECTOR/LATCH SELECT
B GATE

( GATE

OSCILLATOR | ] H SELECT

e et e

b, PROPOSED MODEL

Figure [[-6. Oscillator Reliability Model Block Diagram
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